Journal of Industrial and Engineering Chemistry, Vol.71, 452-459, March, 2019
Hierarchical free-standing networks of MnCo2S4 as efficient Electrocatalyst for oxygen evolution reaction
E-mail:
The development of highly efficient, stable and cost-effective electrocatalyst for oxygen evolution reaction (OER) is critical. Herein, we report growth of MnCo2S4 flakes on SS-mesh using two-step strategy, and used as an efficient, highly active and stable electrocatalyst for OER under alkaline condition. The free-standing electrocatalyst delivers exceptional stability of 100 h and activity for OER with overpotential of 290 mV at a current density of 10 mA cm-2 in 1 M KOH. The enhanced electrocatalytic performance was supported experimentally by electrochemical impedance spectra and measurement of the electrochemically active surface area. The high electrochemical active surface area and electrical conductivity of MnCo2S4 flakes played an essential role in their high electrocatalytic performance.
- Morales-Guio CG, Stern LA, Hu X, Chem. Soc. Rev., 43, 6555 (2014)
- Jamesh MI, J. Power Sources, 333, 213 (2016)
- Mckone JR, Marinescu SC, Brunschwig BC, Winkler JR, Gray HB, Chem. Sci., 5, 865 (2014)
- Xie L, Tang C, Wang K, Du G, Asiri AM, Sun X, Small, 13, 160275 (2017)
- Hao S, Yang Y, J. Mater. Chem. A, 5, 12091 (2017)
- Liu T, Asiri AM, Sun X, Nanoscale, 8, 3911 (2016)
- Tuysuz X, Tuysuz H, ACS Catal., 4, 3701 (2014)
- Yeo BS, Bell AT, J. Am. Chem. Soc., 133(14), 5587 (2011)
- Zhao B, Zheng Y, Ye F, Deng X, Xu XM, Liu ML, Shao ZP, ACS Appl. Mater. Interfaces, 7, 14446 (2015)
- Du J, Chen CC, Cheng FY, J. Chen, Inorg. Chem., 54, 5467 (2015)
- Liang HF, Meng F, Caban-Acevedo M, Li LS, Forticaux A, Xiu LC, Wang ZC, Jin S, Nano Lett., 15, 1421 (2015)
- Bai Y, Zhang H, Feng Y, Fang L, Wang Y, J. Mater. Chem. A, 4, 9072 (2016)
- Chen BL, Li R, Ma GP, Gou XL, Zhu YQ, Xia YD, Nanoscale, 7, 20674 (2015)
- Shalom M, Ressnig D, Yang XF, Clavel G, Fellinger TP, Antonietti M, J. Mater. Chem. A, 3, 8171 (2015)
- Sennu P, Christy M, Aravindan V, Lee YG, Nahm KS, Lee YS, Chem. Mater., 27, 5726 (2015)
- Liu Q, Zhang J, CrystEngComm, 15, 5087 (2013)
- Liu S, Jun SC, J. Power Sources, 342, 629 (2017)
- Pramanik A, Maiti S, Sreemany M, Mahanty S, Electrochim. Acta, 213, 672 (2016)
- Yu M, Li XJ, Ma YX, Liu RL, Liu JH, Li SM, Appl. Surf. Sci., 396, 1816 (2017)
- Zhnag X, Si C, GuO X, Kong R, Qu F, J. Mater. Chem. A, 5, 17211 (2017)
- Wei C, Huang Y, Xue SS, Zhang X, Chen XF, Yan J, Yao W, Chem. Eng. J., 317, 873 (2017)
- Wen P, Fan MJ, Yang DS, Wang Y, Cheng HL, Wang JQ, J. Power Sources, 320, 28 (2016)
- Burke MS, Kast MG, Trotochaud L, Smith AM, Boettcher SW, J. Am. Chem. Soc., 137(10), 3638 (2015)
- Jadhav HS, Roy A, Thorat GM, Seo JG, Inorg. Chem. Front., 5, 1115 (2018)
- McCrory CCL, Jung SH, Peters JC, Jaramillo TF, J. Am. Chem. Soc., 135(45), 16977 (2013)
- Yang S, Song X, Zhang P, Gao L, J. Mater. Chem. A, 3, 6136 (2015)
- Xue Y, Zuo Z, Li Y, Liu H, Li Y, Small, 13, 170093 (2017)
- Sun J, Li W, Zhang B, Li G, Jiang L, Chen Z, Zou R, Hu J, Nano Energy, 4, 56 (2014)
- Lee DU, Kim BJ, Chen ZW, J. Mater. Chem. A, 1, 4754 (2013)
- Yin J, Zhang H, Luo J, Yao M, Hu W, J. Mater. Sci., 28, 2093 (2017)
- Jiang J, Zhang AL, Li LL, Ai LH, J. Power Sources, 278, 445 (2015)
- Liang H, Gandi AN, Xia C, Hedhili MN, Anjum DH, Schwingenschlogl U, Alshareef HN, ACS Energy Lett., 2, 1035 (2017)