화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.56, 422-427, December, 2017
Ionic conductivity of Ga-doped LLZO prepared using Couette.Taylor reactor for all-solid lithium batteries
E-mail:
A Couette.Taylor reactor and a batch reactor were used to synthesize garnet-related LLZO materials (Li7- 3xMxLa3Zr2O12, M = Ga, Al) for all-solid batteries, and the properties of the resulting samples were compared. Ga-doped LLZO synthesized with the Couette.Taylor reactor comprised cubic phase primary nanoparticles; the calculated lattice parameter and crystallite size for the Couette.Taylor and batch reactor samples were a = 12.98043 Å and 129.8 nm and a = 12.97568 Å and 394.5 nm, respectively. The parameters for the Al-doped LLZO congener synthesized with the Couette.Taylor reactor were a = 13.10758 Å, c = 12.67279 Å and 132.5 nm. The cross-section of the Ga-doped LLZOpellet synthesized with the Couette.Taylor reactor showed a denser microstructure than that of the other pellets,with a relative density of 98%. The total ionic conductivity of the Ga-doped LLZO pellets synthesized with the Couette.Taylor reactor was 1.2-1.75 x 10-3 S/cm at 25 °C. This value contrasts sharply with that of the sample from the batch reactor (3.9 x 10-4 S/cm). This is may be related to the large size of Ga doped into the LLZO crystallite structure and the primary nanoparticles, which promoted sintering of the pellet.
  1. Tarascon JM, Armand M, Nature, 414, 359 (2001)
  2. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G, J. Electrochem. Soc., 136, 590 (1989)
  3. Harada Y, Ishigaki T, Kawai H, Kuwano J, Solid State Ion., 108(1-4), 407 (1998)
  4. Murugan R, Thangadurai V, Weppner W, Anal. Chem., 46, 7778 (2007)
  5. Kokal I, Somer M, Notten PHL, Hintzen HT, Solid State Ion., 185(1), 42 (2011)
  6. Imagawa H, Ohta S, Kihira Y, Asaoka T, Solid State Ion., 262, 609 (2014)
  7. Kim KW, Yang SH, Kim MY, Lee MS, Lim J, Chang DR, Kim HS, J. Ind. Eng. Chem., 36, 279 (2016)
  8. Hyooma H, Hayashi K, Mater. Res. Bull., 23, 1399 (1988)
  9. Ohta S, Kobayashi T, Asaoka T, J. Power Sources, 196(6), 3342 (2011)
  10. Allen JL, Wolfentstine J, Rangasamy E, Sakamoto J, J. Power Sources, 315 (2012).
  11. Wolfenstine J, Ratchford J, Rangasamy E, Sakamoto J, Allen JL, Mater. Chem. Phys., 134, 571 (1201)
  12. Shin DO, Ohm K, Kim KM, Park KY, Lee B, Lee YG, Kang K, Sci. Rep., 5, 18053 (2015)
  13. Thompson T, Sharafi A, Johannes MD, Huq A, Allen JL, Wolfenstine J, Sakamoto J, Adv. Energy Mater., 150096 (2015).
  14. Park WK, Kim H, Kim TY, Kim Y, Yoo S, Kim S, Yoon DH, Yang WS, Carbon, 83, 217 (2015)
  15. Taylor GI, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 223, 289 (1923)
  16. Brandstater A, Swift J, Swinney HL, Wolf A, Farmer JD, Crutchfield JP, Phys. Rev. Lett., 51, 1442 (1983)
  17. Gu ZH, Fahidy TZ, Can. J. Chem. Eng., 63, 14 (1985)
  18. Choi M, Kim HS, Kim JS, Park SJ, Lee YM, Jin BS, Mater. Res. Bull., 58, 223 (2014)
  19. Chintapalli M, Timachova K, Olson KR, Mecham SJ, Devaux D, DeSimone JM, Balsara NP, Macromolecules, 49(9), 3508 (2016)
  20. Larraz G, Orera A, Sanjuan ML, J. Mater. Chem., 1, 11419 (2013)
  21. Sun JY, Zhao N, Li Y, Guo X, Feng X, Liu X, Liu Z, Cui H, Zheng H, Gu L, Li H, Sci. Rep., 7, 41217 (2017)