Journal of Industrial and Engineering Chemistry, Vol.56, 422-427, December, 2017
Ionic conductivity of Ga-doped LLZO prepared using Couette.Taylor reactor for all-solid lithium batteries
E-mail:
A Couette.Taylor reactor and a batch reactor were used to synthesize garnet-related LLZO materials (Li7- 3xMxLa3Zr2O12, M = Ga, Al) for all-solid batteries, and the properties of the resulting samples were compared. Ga-doped LLZO synthesized with the Couette.Taylor reactor comprised cubic phase primary nanoparticles; the calculated lattice parameter and crystallite size for the Couette.Taylor and batch reactor samples were a = 12.98043 Å and 129.8 nm and a = 12.97568 Å and 394.5 nm, respectively. The parameters for the Al-doped LLZO congener synthesized with the Couette.Taylor reactor were a = 13.10758 Å, c = 12.67279 Å and 132.5 nm. The cross-section of the Ga-doped LLZOpellet synthesized with the Couette.Taylor reactor showed a denser microstructure than that of the other pellets,with a relative density of 98%. The total ionic conductivity of the Ga-doped LLZO pellets synthesized with the Couette.Taylor reactor was 1.2-1.75 x 10-3 S/cm at 25 °C. This value contrasts sharply with that of the sample from the batch reactor (3.9 x 10-4 S/cm). This is may be related to the large size of Ga doped into the LLZO crystallite structure and the primary nanoparticles, which promoted sintering of the pellet.
Keywords:All-solid battery;Co-precipitation;Couette-Taylor;Garnet-like structure;Sintering temperature;Cubic phase;Ionic conductivity
- Tarascon JM, Armand M, Nature, 414, 359 (2001)
- Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G, J. Electrochem. Soc., 136, 590 (1989)
- Harada Y, Ishigaki T, Kawai H, Kuwano J, Solid State Ion., 108(1-4), 407 (1998)
- Murugan R, Thangadurai V, Weppner W, Anal. Chem., 46, 7778 (2007)
- Kokal I, Somer M, Notten PHL, Hintzen HT, Solid State Ion., 185(1), 42 (2011)
- Imagawa H, Ohta S, Kihira Y, Asaoka T, Solid State Ion., 262, 609 (2014)
- Kim KW, Yang SH, Kim MY, Lee MS, Lim J, Chang DR, Kim HS, J. Ind. Eng. Chem., 36, 279 (2016)
- Hyooma H, Hayashi K, Mater. Res. Bull., 23, 1399 (1988)
- Ohta S, Kobayashi T, Asaoka T, J. Power Sources, 196(6), 3342 (2011)
- Allen JL, Wolfentstine J, Rangasamy E, Sakamoto J, J. Power Sources, 315 (2012).
- Wolfenstine J, Ratchford J, Rangasamy E, Sakamoto J, Allen JL, Mater. Chem. Phys., 134, 571 (1201)
- Shin DO, Ohm K, Kim KM, Park KY, Lee B, Lee YG, Kang K, Sci. Rep., 5, 18053 (2015)
- Thompson T, Sharafi A, Johannes MD, Huq A, Allen JL, Wolfenstine J, Sakamoto J, Adv. Energy Mater., 150096 (2015).
- Park WK, Kim H, Kim TY, Kim Y, Yoo S, Kim S, Yoon DH, Yang WS, Carbon, 83, 217 (2015)
- Taylor GI, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 223, 289 (1923)
- Brandstater A, Swift J, Swinney HL, Wolf A, Farmer JD, Crutchfield JP, Phys. Rev. Lett., 51, 1442 (1983)
- Gu ZH, Fahidy TZ, Can. J. Chem. Eng., 63, 14 (1985)
- Choi M, Kim HS, Kim JS, Park SJ, Lee YM, Jin BS, Mater. Res. Bull., 58, 223 (2014)
- Chintapalli M, Timachova K, Olson KR, Mecham SJ, Devaux D, DeSimone JM, Balsara NP, Macromolecules, 49(9), 3508 (2016)
- Larraz G, Orera A, Sanjuan ML, J. Mater. Chem., 1, 11419 (2013)
- Sun JY, Zhao N, Li Y, Guo X, Feng X, Liu X, Liu Z, Cui H, Zheng H, Gu L, Li H, Sci. Rep., 7, 41217 (2017)