화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.64, 151-166, August, 2018
Comparative studies of electrochemical performance and characterization of TiO2/graphene nanocomposites as anode materials for Li-secondary batteries
E-mail:
Using graphene oxide (GO) and titanium dioxide (TiO2), various types of composites comprised of graphene-bonded and grafted anatase TiO2 were synthesized without employing a cross linking reagent in this study. Graphene sheets were uniformly dispersed among the TiO2 particles, to enhance the cyclability and electronic conductivity of the TiO2 anode for lithium ion batteries. A composite of GO prepared with three types of TiO2 (nanoparticles, nanorods, nanofibers) were synthesized by hydrothermal followed by calcination treatment. The reduction of GO increased simultaneously after calcination under argon atmosphere at 400 °C for 4 h. To achieve overall better electrochemical performance we used the anatase type of TiO2. The physicochemical properties were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Surface properties were measured by the Brunauer.Emmett.Teller (BET) & Barrett.Joyner.Halenda (BJH) method. The electrochemical properties were also investigated by Galvanostatic charge-discharge and Electrochemi- cal Impedance Spectra (EIS). TiO2 nanoparticles composite with graphene delivered rate capability of 155 mAh g-1 at 0.5 C and restored the rate capacity of 109 mAh g-1 after 20 C, with a capacity loss of 30%. TiO2 nanorods composite with graphene benefited from its unique morphology exhibited rate capability of 124 mAh g-1 at 0.5 C and regain the rate capability of 97 mAh g-1, with a capacity loss of 22%. In addition, TiO2 nanofibers graphene composite with low surface area 19 m2 g-1 and pore volume of 0.086 cm3 g-1 transported rate capability of 68 mAh g-1 at 0.5 C and recover the rate capacity of 64 mAh g-1 after 20 C owing to its higher value of lithium-ion diffusion coefficient.
  1. Buiel E, Dahn JR, Electrochim. Acta, 45(1-2), 121 (1999)
  2. Yoon D, Hwang J, Kim DH, Chang W, Chung KY, Kim J, J. Supercrit. Fluids, 125, 66 (2017)
  3. Xiu ZL, Hao XP, Wu YZ, Lu QF, Liu SW, J. Power Sources, 287, 334 (2015)
  4. Wu YP, Rahm E, Holze R, J. Power Sources, 114(2), 228 (2003)
  5. Masjedi-Arani M, Salavati-Niasari M, Int. J. Hydrog. Energy, 42(17), 1 (2017)
  6. Salehabadi A, Salavati-Niasari M, Gholami T, Int. J. Hydrog. Energy, 42(22) (2017)
  7. Salehabadi A, Salavati-Niasari M, Sarrami F, Karton A, Renew. Energy, 114, 1419 (2017)
  8. Bae JW, Park JY, Kwon OS, Lee CS, J. Ind. Eng. Chem., 51, 1 (2017)
  9. Zhou Q, Wu M, Zhang M, Xu G, Yao B, Li C, Shi G, Mater. Today Energy, 6, 181 (2017)
  10. Ghiyasiyan-Arani M, Masjedi-Arani M, Salavati-Niasari M, J. Mol. Catal. A-Chem., 425, 31 (2016)
  11. Sambandam B, Soundharrajan V, Song J, Kim S, Jo J, Pham DT, Kim S, Mathew V, Kim KH, Sun YK, Kim J, J. Electroanal. Chem., 810, 34 (2018)
  12. Mazloom F, Masjedi-Arani M, Salavati-Niasari M, Solid State Sci., 70, 101 (2017)
  13. Ghiyasiyan-Arani M, Masjedi-Arani M, Ghanbari D, Bagheri S, Salavati-Niasari M, Sci. Rep., 6(1), 25231 (2016)
  14. Ghiyasiyan-Arani M, Salavati-Niasari M, Naseh S, Ultrason. Sonochem., 39, 494 (2017)
  15. Gholamrezaei S, Niasari MS, Dadkhah M, Sarkhosh B, J. Mater. Sci. Mater. Electron., 27(1), 118 (2016)
  16. Ghiyasiyan-Arani M, Masjedi-Arani M, Salavati-Niasari M, J. Mol. Liq., 216, 59 (2016)
  17. Mazloom F, Masjedi-Arani M, Ghiyasiyan-Arani M, Salavati-Niasari M, J. Mol. Liq., 214, 46 (2016)
  18. Ghiyasiyan-Arani M, Masjedi-Arani M, Salavati-Niasari M, J. Nanostruct., 5(4), 437 (2015)
  19. Parayil SK, Razzaq A, Park SM, Kim HR, Grimes CA, In SI, Appl. Catal. A: Gen., 498, 205 (2015)
  20. Razzaq A, Sinhamahapatra A, Kang TH, Grimes CA, Yu JS, In SI, Appl. Catal. B: Environ., 215, 28 (2017)
  21. Yu L, Wang Z, Zhang L, Wu HB, Lou XW, J. Mater. Chem. A, 1, 122 (2013)
  22. Zhu GN, Wang YG, Xia YY, Energy Environ. Sci., 5(5), 6652 (2012)
  23. Wang B, Xin H, Li X, Cheng J, Yang G, Nie F, Sci. Rep., 4(1), 3729 (2015)
  24. Wang HE, Cheng H, Liu CP, Chen X, Jiang QL, Lu ZG, Li YY, Chung CY, Zhang WY, Zapien JA, Martinu L, Bello I, J. Power Sources, 196(15), 6394 (2011)
  25. Ryu MH, Jung KN, Shin KH, Han KS, Yoon S, J. Phys. Chem. C, 117(6), 8092 (2013)
  26. Zhao B, Jiang S, Su C, Cai R, Ran R, Tade MO, Shao Z, J. Mater. Chem. A, 1(39), 12310 (2013)
  27. Guo YG, Hu YS, Sigle W, Maier J, Adv. Mater., 19(16), 2087 (2007)
  28. Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
  29. Huang H, Zhang J, Jiang L, Zang Z, J. Alloy. Compd., 718, 112 (2017)
  30. Zang Z, Zeng X, Wang M, Hu W, Liu C, Tang X, Sens. Actuators B-Chem., 252, 1179 (2017)
  31. Wei J, Zang Z, Zhang Y, Wang M, Du J, Tang X, Opt. Lett., 42(5), 911 (2017)
  32. Bayer T, Selyanchyn R, Fujikawa S, Sasaki K, Lyth SM, J. Membr. Sci., 541, 347 (2016)
  33. Zhang X, Kumar PS, Aravindan V, Liu HH, Sundaramurthy J, Mhaisalkar SG, Duong HM, Ramakrishna S, Madhavi S, J. Phys. Chem. C, 116(28), 14780 (2012)
  34. Li N, Liu G, Zhen C, Li F, Zhang LL, Cheng HM, Adv. Funct. Mater., 21(9), 1717 (2011)
  35. Chen JS, Wang Z, Dong XC, Chen P, Lou XWD, Nanoscale, 3(5), 2158 (2011)
  36. Yan X, Li Y, Du F, Zhu K, Zhang Y, Su A, Chen G, Wei Y, Nanoscale, 6(8), 4108 (2014)
  37. Zhou W, Zhu J, Cheng C, Liu J, Yang H, Cong C, Guan C, Jia X, Fan HJ, Yan Q, Li CM, Yu T, Energy Environ. Sci., 4(12), 4954 (2011)
  38. Yang X, Fan K, Zhu Y, Shen J, Jiang X, Zhao P, Li C, J. Mater. Chem., 22(22), 17278 (2012)
  39. Zhang H, Lv X, Li Y, Wang Y, Li J, ACS Nano, 4(1), 380 (2009)
  40. Zakharova GS, Jahne C, Popa A, Taschner C, Gemming T, Leonhardt A, Buchner B, Klingeler R, J. Phys. Chem. C, 116, 8714 (2012)
  41. Mao YB, Wong SS, J. Am. Chem. Soc., 128(25), 8217 (2006)
  42. Wang G, Shen X, Yao J, Park J, Carbon N.Y., 47(8), 2049 (2009)
  43. Wu W, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H, ACS Nano, 4(6), 3187 (2010)
  44. Thirugunanam L, Kaveri S, Etacheri V, Ramaprabhu S, Dutta M, Pol VG, Mater. Charact., 131, 64 (2017)
  45. Guo H, Wang X, Qian Q, Wang F, Xia X, ACS Nano, 3(9), 2653 (2009)
  46. Dong L, Li MS, Dong L, Zhao ML, Feng JM, Han Y, Deng JH, Li XF, Li DJ, Sun XL, Int. J. Hydrog. Energy, 39(28), 16116 (2014)
  47. Pan X, Zhao Y, Liu S, Korzeniewski CL, Wang S, Fan Z, ACS Appl. Mater. Interfaces, 4(8), 3944 (2012)
  48. Ohsaka T, Izumi F, Fujiki Y, J. Raman Spectrosc., 7(6), 321 (1978)
  49. Liu H, Li W, Shen D, Zhao D, Wang G, J. Am. Chem. Soc., 137(40), 13161 (2015)
  50. Tong XL, Zeng M, Li J, Li FY, Appl. Surf. Sci., 392, 897 (2017)
  51. Razzaq A, Grimes CA, In SI, Carbon N.Y., 98, 537 (2016)
  52. Sim LC, Leong KH, Ibrahim S, Saravanan P, J. Mater. Chem. A, 2(15), 5315 (2014)
  53. Lu T, Zhang R, Hu C, Chen F, Duo S, Hu Q, Phys. Chem. Chem. Phys., 15, 12963 (2013)
  54. Sreekantan S, Saharudin KA, Lockman Z, Tzu TW, Nanotechnology, 21(36), 365603 (2010)
  55. Wang P, Tang Y, Dong Z, Chen Z, Lim TT, J. Mater. Chem. A, 1(15), 4718 (2013)
  56. Han MY, Chen G, Appl. Surf. Sci., 388, 401 (2016)
  57. Luan XN, Chen LN, Zhang JD, Qu GY, Flake JC, Wang Y, Electrochim. Acta, 111, 216 (2013)
  58. Wen Y, Ding H, Shan Y, Nanoscale, 3(10), 4411 (2011)
  59. Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S, Carbon N.Y., 47(14), 3280 (2009)
  60. Cheng X, Liu H, Chen Q, Li J, Wang P, Carbon N.Y. 66, 66, 450 (2014)
  61. Yang SB, Feng XL, Mullen K, Adv. Mater., 23(31), 3575 (2011)
  62. Liu H, Cao K, Xu X, Jiao L, Wang Y, Yuan H, ACS Appl. Mater. Interfaces, 7(21), 11239 (2015)
  63. Petkovich ND, Wilson BE, Rudisill SG, Stein A, ACS Appl. Mater. Interfaces, 6(20), 18215 (2014)
  64. Xie Y, Song JH, Zhou PP, Ling Y, Wu YM, Electrochim. Acta, 210, 358 (2016)
  65. Lavanya T, Dutta M, Satheesh K, Sep. Purif. Technol., 168, 284 (2016)
  66. Yang MC, Lee YY, Xu B, Powers K, Meng YS, J. Power Sources, 207, 166 (2012)
  67. Mo RW, Lei ZY, Sun KN, Rooney D, Adv. Mater., 26(13), 2084 (2014)
  68. Shenouda AY, Liu HK, J. Power Sources, 185(2), 1386 (2008)
  69. Fey GTK, Lu CZ, Kumar TP, J. Power Sources, 115(2), 332 (2003)
  70. Cao H, Li B, Zhang J, Lian F, Kong X, Qu M, J. Mater. Chem., 22(19), 9759 (2012)
  71. Liu H, Bi S, Wen G, Teng X, Gao P, Ni Z, Zhu Y, Zhang F, J. Alloy. Compd., 543, 99 (2012)
  72. Zheng P, Liu T, Su Y, Zhang L, Guo S, Sci. Rep., 6(1), 36580 (2016)
  73. Liu YB, Ding TL, Shen DL, Dou J, Wei MD, J. Electroanal. Chem., 804, 87 (2017)
  74. Yeo Y, Jung JW, Park K, Kim ID, Sci. Rep., 5, 13862 (2015)