Applied Surface Science, Vol.388, 401-405, 2016
Optimized dispersion of conductive agents for enhancedLi-storage performance of TiO2
Novel TiO2/carbon (TiO2/C) composites have been synthesized by a layer-by-layer deposition method, with electrostatic interaction. The addition of carbon conductive agents enhances the electrochemical performance of TiO2. Carbon for these has been sourced OD nitrogen-doped carbon, 1D carbon nano tubes and 2D graphene. The as-obtained TiO2/C composites show carbon nanotubes and titanium dioxide coaxial nanocables anchored on the graphene. The nitrogen-doped carbon is uniformly dispersed on the nanocables. As anode materials for Li-ion batteries, the TiO2/C composites exhibit excellent rate capability and cycling stability. A capacity of 150 mAh/g is retained at a current density of 4 A/g. The enhanced electrochemical performance may be attributed to the well-dispersed carbon conductive framework, which facilitates charge transfer during the lithium insertion/extraction process. (C) 2015 Elsevier B.V. All rights reserved.