화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.4, 621-626, July, 2015
단일이온 Poly(POEM-co-AMPSLi) 전해질에 대한 BF3 첨가효과
Effect of BF3 Inclusion on Poly(POEM-co-AMPSLi) Single-ion Polymer Electrolytes
E-mail:
초록
본 연구에서는 다양한 조성의 poly(ethylene glycol) methyl ether methacryate(POEM)과 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPS)를 함유하는 공중합체를 합성하고 Li2CO3와의 적정반응을 통해 단일이온 전도성 poly(POEM-co-AMPSLi)를 제조하여 전기화학적 특성을 평가하였다. 또한 고분자전해질에 BF3를 첨가하여 루이스산이 이온전도도 및 열적특성에 미치는 영향을 평가하였다. 제조된 고분자전해질은 0.93의 리튬이온 수송률이 관찰되어 단일이온 전도체임을 확인하고 6 V까지 전기화학적 안정성을 보여주었지만, 3.2×10-7 S/cm의 낮은 상온 이온전도도가 관찰되었다. 하지만, 고분자전해질에 대한 BF3첨가는 이온간 해리를 가능하게 하여 상온 이온전도도의 경우 [EO]:[Li] 비율 27:1에서 최대 1.3×10-5 S/cm의 높은 값을 얻을 수 있었다. 나아가 BF3 첨가는 리튬이온과 ethylene oxide기의 배위를 증가시켜 결과적으로 고분자전해질의 결정용융온도를 감소시키는 효과도 함께 나타내었다.
Single-ion conducting poly(POEM-co-AMPSLi)s were prepared by a radical polymerization of various amount of poly(ethylene glycol) methyl ether methacryate (POEM) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) followed by a titration with Li2CO3. The electrochemical properties and an effect of BF3inclusion on the ionic conductivity and thermal properties were investigated. The obtained polymer electrolytes showed electrochemical stability up-to 6 V and 0.93 of lithium ion transference number suggested that the electrolytes are one of the single-ion conductors but only 3.2×10-7 S/cm of room temperature ionic conductivity was observed. However, there was a dramatic increase of room temperature ionic conductivity after inclusion of BF3 and 1.3×10-5 S/cm was observed in polymer electrolyte with [EO]:[Li] ratio of 27:1. Furthermore, the inclusion of BF3 decreases the crystalline melting temperature of polymer electrolytes by increasing the coordination between lithium ion and ethylene oxide unit in the polymer matrix.
  1. Zhang SS, Yang LL, Liu QG, Solid State Ion., 76(1-2), 121 (1995)
  2. Cowie JMG, Spence GH, Solid State Ion., 123(1-4), 233 (1999)
  3. Watanabe M, Tokuda H, Muto S, Electrochim. Acta, 46(10-11), 1487 (2001)
  4. Sun XG, Hou J, Kerr JB, Electrochim. Acta, 50(5), 1139 (2005)
  5. MacCallum J, Vincent C, Polymer Electrolyte Reviews-1, Elsevier Applied Science, New York, 1987.
  6. Nazri GA, Pistoia G, Lithium Batteries Science and Technology, Kluwer Academic Publishers, New York, 2004.
  7. Yosho M, Brodd R, Kozawa A, Lithium-ion Batteries, Springer, New York, 2009
  8. Kato Y, Yokoyama S, Yabe T, Ikuta H, Uchimoto Y, Wakihara M, Electrochim. Acta, 50(2-3), 281 (2004)
  9. Sadoway DR, Huang BY, Trapa PE, Soo PP, Bannerjee P, Mayes AM, J. Power Sources, 97-98, 621 (2001)
  10. Park CH, Sun YK, Kim DW, Electrochim. Acta, 50(2-3), 375 (2004)
  11. Sun J, MacFarlane DR, Forsyth M, Solid State Ion., 147(3-4), 333 (2002)
  12. Florjanczyk Z, Bzducha W, Langwald N, Dygas JR, Krok F, Misztal-Faraj B, Electrochim. Acta, 44, 3563 (2000)
  13. Ryu SW, Trapa PE, Olugebefola SC, Gonzalez-Leon JA, Sadoway DR, Mayes AM, J. Electrochem. Soc., 152(1), A158 (2005)
  14. Kang WC, Park HG, Kim KC, Ryu SW, Electrochim. Acta, 54(19), 4540 (2009)
  15. Kim KC, Ryu SW, J. Korean Electrochem. Soc., 15, 230 (2012)
  16. Choi DI, Ryu SW, J. Korean Electrochem. Soc., 17, 65 (2014)
  17. Bruce P, Vincent C, J. Electroanal. Chem., 225, 1 (1987)
  18. Mauro V, D'Aprano A, Croce F, Salomon M, J. Power Sources, 141(1), 167 (2005)