Applied Chemistry for Engineering, Vol.28, No.2, 214-220, April, 2017
결정화/응집에 의한 구형 Al/RDX/AP 에너지 복합체 제조 및 그 열분해 특성
Preparation of Al/RDX/AP Energetic Composites by Drowning-out/Agglomeration and Their Thermal Decomposition Characteristics
E-mail:
초록
결정화/응집(drowning-out/agglomeration, D/A) 공정을 이용하여 평균 입도 550 μm인 구형 Al/RDX/AP 에너지 복합체를 제조하였다. SEM과 X-선 분광분석을 이용해 복합체의 표면 구조와 Al의 분포를 분석하였다. 열분석 결과 D/A 공정에 의해 제조된 Al/RDX/AP 복합체는 물리적 혼합에 의한 복합체와 비교하여 분해 개시 온도가 약 50 ℃ 정도 낮아졌으며, 동시에 활성화 에너지의 증가에 의해 열적 안정성도 상승하는 것으로 확인되었다. AP의 1차 분해 구간에서는 물리적 혼합과 D/A 공정에 의한 복합체 모두 Prout-Tompkins 모델에 의해 잘 모사되었다. 그러나 AP의 2차 분해 구간에서는 물리적 혼합에 의해 제조된 복합체는 zero-order 모델로 해석되는 반면, D/A 공정에 의해 제조된 복합체는 contracting volume 모델로 해석됨을 알 수 있었다.
The spherical Al/RDX/AP composites with an average size of 550 μm were successfully prepared by drowning-out/agglomeration (D/A) process. The surface morphology and dispersion of Al particles of those composites were investigated using SEM and EDS (energy dispersive spectrometry). As a result of thermal analysis, the onset temperature of thermal decomposition of the Al/RDX/AP composites by the D/A process was found to decrease about 50 °C and their thermal stability was shown to be relatively enhanced due to the increase of activation energy compared to those of using the physical mixing method. In the first decomposition region of AP, Prout-Tompkins model was shown to describe well the thermal decomposition of both composites by the physical mixing and D/A process. On the other hand, in the second decomposition region of AP, the decomposition mechanisms of composites by the physical mixing and D/A process were explained by the zero-order and contracting volume model, respectively.
- Oberth AE, Principles of Solid Propellant Development, Chemical Propulsion Information Agency, MD, USA (1987).
- Davenas A, J. Propul. Power, 19, 1108 (2003)
- Zhao FQ, Chen P, Li SW, Thermochim. Acta, 416(1-2), 75 (2004)
- Yim YJ, J. Korean Soc. Propul. Eng., 9, 112 (2005)
- Zhang Y, Liu X, Nie J, Yu L, Zhong Y, Huang C, J. Solid State Chem., 184, 387 (2011)
- Zhou Z, Tian S, Zeng D, Tang G, Xie C, J. Alloy. Compd., 513, 213 (2012)
- Wu CW, Sullivan K, Chowdhury S, Jian GQ, Zhou L, Zachariah MR, Adv. Funct. Mater., 22(1), 78 (2012)
- Davenas A, Solid Rocket Propulsion Technology, Pergamon Press, NY, USA (1993).
- Jacob RJ, Wei BR, Zachariah MR, Combust. Flame, 167, 472 (2016)
- Lee EA, Shim HM, Kim JK, Kim HS, Koo KK, Appl. Chem. Eng., 27(2), 158 (2016)
- Shim HM, Kim JK, Kim HS, Koo KK, Ind. Eng. Chem. Res., 55(39), 10227 (2016)
- Vyazovkin S, Wight CA, Thermochim. Acta, 340-341, 53 (1999)
- Jankovic B, Chem. Eng. J., 139(1), 128 (2008)
- Boldyrev VV, Thermochim. Acta, 443(1), 1 (2006)
- Bircumshaw LL, Newman BH, Proc. R. Soc. London, A, 227, 115 (1954)
- Vyazovkin S, Wight CA, Chem. Mater., 11, 3386 (1999)
- Khawam A, Flanagan DR, J. Phys. Chem. B, 110(35), 17315 (2006)
- Pakulak JM, Kuletz E, Thermal Analysis Studies on Candidate Solid JPL Propellants for Heat Sterilizable Motors, NWC TP 4285, Defense Technical Information Center, USA (1970).
- Galwey AK, Brown ME, Thermochim. Acta, 386(1), 91 (2002)