화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.2, 221-229, April, 2017
Pt/Al2O3계 촉매의 특성이 수소제어 활성에 미치는 영향 연구
Effect of Pt/Al2O3-based Catalysts on Removal Efficiency of Hydrogen
E-mail:
초록
본 연구에서는 다양한 상용 알루미나 지지체의 수소 상온산화 반응특성을 확인하기 위하여 활성금속 Pt를 기본으로한 촉매에 습식함침법으로 제조하였다. 제조된 촉매들은 XPS, CO-chemisorption, BET를 이용하여 특성분석을 수행하였다. 다양한 Pt/Al2O3계 촉매는 열처리 조건에 따라서 촉매를 제조할 경우 전자.전하의 이동으로 발생하는 전기음성도 특성이 Pt의 산소종을 제어하였다. Pt의 담지량이 증가함에 따라 분산도가 감소하는 이유는 Pt의 HT (Huttig Temperature)에 기인한 것으로 보인다. 또한 상온에서 제어할 수 있는 최소 수소농도는 metallic Pt가 촉매 내 70.09% 이상에서 1.0 vol%까지 수소를 제어할 수 있었다.
In this study, a wet impregnation method was applied to catalysts based on the active metal Pt in order to confirm the oxidation characteristics of various commercial alumina supports at room temperature. The catalysts were characterized using XPS, CO-chemisorption, and BET. Various Pt/Al2O3 catalysts controlled the oxygen species of Pt by the electronegativity of electrons and charges when the catalyst was prepared according to the heat treatment conditions. The reason that the dispersion degree decreases with increasing Pt loading seems to be attributed to HT (Huttig Temperature) of Pt. In addition, the minimum hydrogen concentration that can be controlled at room temperature can control hydrogen from metallic Pt up to 1.0 vol% at over 70.09% in the catalyst.
  1. Biswas P, Wu CY, J. Air Waste Manege. Assoc., 48, 113 (1998)
  2. Kang YS, Kim SS, Lee HD, Kim JK, Hong SC, Appl. Chem. Eng., 22(2), 219 (2011)
  3. Kang YS, Kim SS, Lee HD, Kim JK, Hong SC, Appl. Chem. Eng., 22(2), 219 (2011)
  4. Rinnemo M, Deutschmann O, Behrendt F, Kasemo B, Combust. Flame, 111(4), 312 (1997)
  5. Reinecke EA, Tragsdorf IM, Gierling K, Nucl. Eng. Des., 230, 49 (2004)
  6. Deng J, Cao XW, Nucl. Eng. Des., 238, 2554 (2008)
  7. Bachellerie E, Arnould F, Auglaire M, Boeck B, Braillard O, Eckardt B, Ferroni F, Moffett R, Nucl. Eng. Des., 238, 2554 (2008)
  8. Royl P, Rochholz H, Breitung W, Travis JR, Necker G, Nucl. Eng. Des., 202, 231 (2000)
  9. Fernandes NE, Park YK, Vlachos DG, Combust. Flame, 118(1-2), 164 (1999)
  10. Liu LQ, Qiao BT, He YD, Zhou F, Yang BQ, Deng YQ, J. Catal., 294, 29 (2012)
  11. Qiao BT, Wang AQ, Takahashi M, Zhang YJ, Wang JH, Deng YQ, Zhang T, J. Catal., 279(2), 361 (2011)
  12. Proch S, Herrmannsdorfer J, Kempe R, Kern C, Jess A, Seyfarth L, Senker J, Chem.-Eur. J., 14, 8204 (2008)
  13. Chen M, Pei ZL, Sun C, Wen LS, Wang X, Mater. Lett., 48, 194 (2001)
  14. Ivanova AS, Slavinskaya EM, Gulyaev RV, Zaikovskii VI, Stonkus OA, Danilova IG, Plyasova LM, Polukhina IA, Boronin AI, Appl. Catal. B: Environ., 97(1-2), 57 (2010)
  15. Huizinga T, Van’t Blik HFJ, Vis JC, Prins R, Surf. Sci., 135, 580 (1983)
  16. Richardson JT, Principles of Catalyst Development, Plenum Press, NY, USA (1989).