화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.46, 350-355, February, 2017
Enhanced mass transfer rate and solubility of methane via addition of alcohols for Methylosinus trichosporium OB3b fermentation
E-mail:
The effect of alcohol on methane-water volumetric mass transfer coefficient (kLa) and solubility of methane was investigated in this study. Various alcohols including methanol, ethanol, 1-propanol, butanol, and pentanol were added to aqueous solution and enhancement of both methane-water kLa (from 72 h-1 to 471 h-1) and solubility (from 21.72 mg/L to 30.41 mg/L) was observed, depending on alcohol type and concentration. Among all alcohols, 1-propanol exhibited largest enhancement via bubble coalescence inhibition effect. Enhanced methane-water kLa and methane solubility in aqueous solution were employed for the fermentation of Methylosinus trichosporium OB3b, and cell growth rate and maximum optical density were increased by 700% and 730%, respectively, by addition of 1-propanol.
  1. Majsztrik PW, Mechanical and Transport Properties of Nafion® for Pem Fuel Cells; Temperature and Hydration Effects. Dissertation, Princeton University, 2008.
  2. Gregg JS, Andres RJ, Marland G, Geophys. Res. Lett., 35, L08806 (2008)
  3. McKendry P, Bioresour. Technol., 83(1), 37 (2002)
  4. Mohammadi M, Najafpour GD, Younsesi H, Lahijani P, Uzir MH, Mohamed AR, Renew. Sust. Energ. Rev., 15, 4255 (2011)
  5. Munasinghe PC, Khanal SK, Bioresour. Technol., 101(13), 5013 (2010)
  6. Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT, Biotechnol. Adv., 32, 596 (2014)
  7. Ahmed A, Lewis RS, Biotechnol. Bioeng., 97(5), 1080 (2007)
  8. Logan BE, Microbial Fuel Cells, John Wiley & Sons, New Jersey, 2008.
  9. Van Hamme JD, Singh A, Ward OP, Microbiol. Mol. Biol. Rev., 67, 503 (2003)
  10. Lee J, Kim K, Chang IS, Kim MG, Ha KS, Lee EY, Lee JW, Kim C, J. Mol. Liq., 215, 154 (2016)
  11. Riet KV, Ind. Eng. Chem. Process Des. Dev., 18, 357 (1979)
  12. Bai FW, Wang LP, Huang HJ, Xu JF, Caesar J, Ridgway D, Gu TY, Moo-Young M, Biotechnol. Lett., 23(14), 1109 (2001)
  13. Kim K, Lee J, Seo K, Kim MG, Ha KS, Kim C, J. Ind. Eng. Chem., 33, 326 (2016)
  14. Henry CL, Craig VSJ, Langmuir, 25(19), 11406 (2009)
  15. Ozbek B, Gayik S, Process Biochem., 36(8-9), 729 (2001)
  16. Myer D, Surfaces, Interfaces, and Colloids: Principles and Applications, John Wiley & Sons, New Jersey, 1999.
  17. Moraveji MK, Sajjadi B, Davarnejad R, Chem. Eng. Technol., 3, 465 (2011)
  18. Srinivas A, Ghosh P, AAPG Bull., 51, 795 (2012)
  19. Albijanic B, Havran V, Petrovic DL, Duric M, Tekic MN, AIChE J., 53(11), 2897 (2007)
  20. Carlsen HN, Degn H, Lloyd D, J. Gen. Microbiol., 137, 2879 (1991)
  21. Dedysh SN, Dunfield PF, Methods Enzymol., 495, 31 (2011)
  22. Dunfield PF, Dedysh SN, Trends Microbiol., 22, 368 (2014)
  23. Lee J, Yasin M, Park S, Chang IS, Ha KS, Lee EY, Lee J, Kim C, Korean J. Chem. Eng., 32(6), 1060 (2015)
  24. Park S, Yasin M, Kim D, Park H, Kang C, Kim D, Chang I, J. Ind. Microbiol. Biotechnol., 40, 995 (2013)
  25. Zuidema H, Water G, Ind. Eng. Chem. Anal. Ed., 13, 312 (1941)
  26. Hwang IY, Hur DH, Lee JH, Park CH, Chang IS, Lee JW, Lee EY, J. Microbiol. Biotechnol., 25, 375 (2015)
  27. Kadic E, Heindel TJ, An Introduction to Bioreactor Hydrodynamics and Gas-liquid Mass Transfer, John Wiley & Sons, 2014.
  28. Zhu HY, Shanks BH, Heindel TJ, Ind. Eng. Chem. Res., 48(6), 3206 (2009)
  29. Massoudi R, King AD, J. Phys. Chem., 78, 2262 (1974)
  30. Ashokkumar M, Hall R, Mulvaney P, Grieser F, J. Phys. Chem. B, 101(50), 10845 (1997)
  31. Vatamanu J, Kusalik PG, J. Phys. Chem. B, 110(32), 15896 (2006)
  32. Kazakis NA, Mouza AA, Paras SV, Chem. Eng. Sci., 63(21), 5160 (2008)
  33. Ribeiro CP, Mewes D, Chem. Eng. J., 126(1), 23 (2007)
  34. Danov KD, Valkovska DS, Ivanov IB, J. Colloid Interface Sci., 211(2), 291 (1999)
  35. Sharma A, Ruckenstein E, Langmuir, 3, 760 (1987)
  36. Usui S, Sasaki H, J. Colloid Interface Sci., 65, 36 (1978)