Journal of Industrial and Engineering Chemistry, Vol.46, 350-355, February, 2017
Enhanced mass transfer rate and solubility of methane via addition of alcohols for Methylosinus trichosporium OB3b fermentation
E-mail:
The effect of alcohol on methane-water volumetric mass transfer coefficient (kLa) and solubility of methane was investigated in this study. Various alcohols including methanol, ethanol, 1-propanol, butanol, and pentanol were added to aqueous solution and enhancement of both methane-water kLa (from 72 h-1 to 471 h-1) and solubility (from 21.72 mg/L to 30.41 mg/L) was observed, depending on alcohol type and concentration. Among all alcohols, 1-propanol exhibited largest enhancement via bubble coalescence inhibition effect. Enhanced methane-water kLa and methane solubility in aqueous solution were employed for the fermentation of Methylosinus trichosporium OB3b, and cell growth rate and maximum optical density were increased by 700% and 730%, respectively, by addition of 1-propanol.
Keywords:Methane;Aliphatic alcohol;Volumetric mass transfer coefficient;Bubble coalescence inhibition;Marangoni effect
- Majsztrik PW, Mechanical and Transport Properties of Nafion® for Pem Fuel Cells; Temperature and Hydration Effects. Dissertation, Princeton University, 2008.
- Gregg JS, Andres RJ, Marland G, Geophys. Res. Lett., 35, L08806 (2008)
- McKendry P, Bioresour. Technol., 83(1), 37 (2002)
- Mohammadi M, Najafpour GD, Younsesi H, Lahijani P, Uzir MH, Mohamed AR, Renew. Sust. Energ. Rev., 15, 4255 (2011)
- Munasinghe PC, Khanal SK, Bioresour. Technol., 101(13), 5013 (2010)
- Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT, Biotechnol. Adv., 32, 596 (2014)
- Ahmed A, Lewis RS, Biotechnol. Bioeng., 97(5), 1080 (2007)
- Logan BE, Microbial Fuel Cells, John Wiley & Sons, New Jersey, 2008.
- Van Hamme JD, Singh A, Ward OP, Microbiol. Mol. Biol. Rev., 67, 503 (2003)
- Lee J, Kim K, Chang IS, Kim MG, Ha KS, Lee EY, Lee JW, Kim C, J. Mol. Liq., 215, 154 (2016)
- Riet KV, Ind. Eng. Chem. Process Des. Dev., 18, 357 (1979)
- Bai FW, Wang LP, Huang HJ, Xu JF, Caesar J, Ridgway D, Gu TY, Moo-Young M, Biotechnol. Lett., 23(14), 1109 (2001)
- Kim K, Lee J, Seo K, Kim MG, Ha KS, Kim C, J. Ind. Eng. Chem., 33, 326 (2016)
- Henry CL, Craig VSJ, Langmuir, 25(19), 11406 (2009)
- Ozbek B, Gayik S, Process Biochem., 36(8-9), 729 (2001)
- Myer D, Surfaces, Interfaces, and Colloids: Principles and Applications, John Wiley & Sons, New Jersey, 1999.
- Moraveji MK, Sajjadi B, Davarnejad R, Chem. Eng. Technol., 3, 465 (2011)
- Srinivas A, Ghosh P, AAPG Bull., 51, 795 (2012)
- Albijanic B, Havran V, Petrovic DL, Duric M, Tekic MN, AIChE J., 53(11), 2897 (2007)
- Carlsen HN, Degn H, Lloyd D, J. Gen. Microbiol., 137, 2879 (1991)
- Dedysh SN, Dunfield PF, Methods Enzymol., 495, 31 (2011)
- Dunfield PF, Dedysh SN, Trends Microbiol., 22, 368 (2014)
- Lee J, Yasin M, Park S, Chang IS, Ha KS, Lee EY, Lee J, Kim C, Korean J. Chem. Eng., 32(6), 1060 (2015)
- Park S, Yasin M, Kim D, Park H, Kang C, Kim D, Chang I, J. Ind. Microbiol. Biotechnol., 40, 995 (2013)
- Zuidema H, Water G, Ind. Eng. Chem. Anal. Ed., 13, 312 (1941)
- Hwang IY, Hur DH, Lee JH, Park CH, Chang IS, Lee JW, Lee EY, J. Microbiol. Biotechnol., 25, 375 (2015)
- Kadic E, Heindel TJ, An Introduction to Bioreactor Hydrodynamics and Gas-liquid Mass Transfer, John Wiley & Sons, 2014.
- Zhu HY, Shanks BH, Heindel TJ, Ind. Eng. Chem. Res., 48(6), 3206 (2009)
- Massoudi R, King AD, J. Phys. Chem., 78, 2262 (1974)
- Ashokkumar M, Hall R, Mulvaney P, Grieser F, J. Phys. Chem. B, 101(50), 10845 (1997)
- Vatamanu J, Kusalik PG, J. Phys. Chem. B, 110(32), 15896 (2006)
- Kazakis NA, Mouza AA, Paras SV, Chem. Eng. Sci., 63(21), 5160 (2008)
- Ribeiro CP, Mewes D, Chem. Eng. J., 126(1), 23 (2007)
- Danov KD, Valkovska DS, Ivanov IB, J. Colloid Interface Sci., 211(2), 291 (1999)
- Sharma A, Ruckenstein E, Langmuir, 3, 760 (1987)
- Usui S, Sasaki H, J. Colloid Interface Sci., 65, 36 (1978)