화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.33, 326-329, January, 2016
Enhancement of methane.water volumetric mass transfer coefficient by inhibiting bubble coalescence with electrolyte
E-mail:
The effect of electrolyte on methane.water volumetric mass transfer coefficient (kLa) was investigated in this study. Various electrolytes including MgSO4, K2SO4, Na2SO4, MgCl2, KCl, NaCl, MgBr2, NaBr, KBr, Mg(NO3)2, KNO3, and NaNO3 were employed and enhancement of kLa from 103 h-1 (in pure water) to 711 h-1 was observed, depending on electrolyte type and concentration. This is the highest methane. water kLa value measured at ambient condition. For all electrolytes, ions with large charge density (charge valency per ionic volume) exhibited larger enhancement in methane.water kLa values. Furthermore, anions exhibited larger influence than cations on the enhancement of kLa. Enhancement of methane-water kLa by electrolytes was due to the inhibition of methane bubble coalescence.
  1. Entrekin S, Evans-White M, Johnson B, Hagenbuch E, Front. Ecol. Environ., 9, 503 (2011)
  2. Rogner HH, Barthel F, Cabrera M, Faaij A, Giroux M, Energy Resources, World Energy Assessment, New York, 2009p. 423.
  3. Clark JH, Farmer TJ, Hunt AJ, Sherwood J, Int. J. Mol. Sci., 16, 17101 (2015)
  4. Speight JG, The Refinery of the Future, 1st ed., William Andrew, Boston, 2000.
  5. Logan BE, Microbial Fuel Cells, John Wiley & Sons, New Jersey, 2008.
  6. Van Hamme JD, Singh A, Ward OP, Microbiol. Mol. Biol. Rev., 67, 503 (2003)
  7. Worden R, Bredwell M, Grethlein A, Engineering Issues in Synthesis-gas Fermentations, ACS Publications, 1997.
  8. Ahmed A, Lewis RS, Biotechnol. Bioeng., 97(5), 1080 (2007)
  9. Kirillova MV, Kuznetsov ML, Reis PM, da Silva JAL, da Silva JJRF, Pombeiro AJL, J. Am. Chem. Soc., 129(34), 10531 (2007)
  10. Bai FW, Wang LP, Huang HJ, Xu JF, Caesar J, Ridgway D, Gu TY, Moo-Young M, Biotechnol. Lett., 23(14), 1109 (2001)
  11. Lee J, Yasin M, Park S, Chang IS, Ha KS, Lee EY, Lee J, Kim C, Korean J. Chem. Eng., 32(6), 1060 (2015)
  12. Zhu HY, Shanks BH, Heindel TJ, Ind. Eng. Chem. Res., 47(20), 7881 (2008)
  13. Zhu HY, Shanks BH, Heindel TJ, Ind. Eng. Chem. Res., 48(6), 3206 (2009)
  14. Craig V, Ninham B, Pashley R, Nature, 364, 317 (1993)
  15. Park S, Yasin M, Kim D, Park H, Kang C, Kim D, Chang I, J. Ind. Microbiol. Biotechnol., 40, 995 (2013)
  16. Crovetto R, Fernandez-Prini R, Japas ML, J. Chem. Phys., 76, 1077 (1982)
  17. Van’t Riet K, Ind. Eng. Chem. Process Des. Dev., 18, 357 (1979)
  18. Al-Maaieh A, Flanagan DR, J. Pharm. Sci., 91, 1000 (2002)
  19. Graziano G, J. Chem. Phys., 129, 084506 (2008)
  20. Gross PM, Chem. Rev., 13, 91 (1933)
  21. Kopke M, Mihalcea C, Bromley JC, Simpson SD, Curr. Opin. Biotechnol., 22, 320 (2011)
  22. Yasin M, Park S, Jeong Y, Lee EY, Lee J, Chang IS, Bioresour. Technol., 169, 637 (2014)
  23. Munasinghe PC, Khanal SK, Biotechnol. Prog., 26(6), 1616 (2010)
  24. Cussler EL, Diffusion: Mass Transfer in Fluid System, 2nd ed., Cambridge University Press, New York, 1997.
  25. Tham MK, Gubbins KE, J. Chem. Soc.-Faraday Trans., 1(68), 1339 (1972)
  26. Creux P, Lachaise J, Graciaa A, Beattie JK, J. Phys. Chem. C, 111, 3753 (2007)
  27. Elmallidy AM, Mirnezami M, Finch JA, Int. J. Miner. Process., 89(1-4), 40 (2008)
  28. Alty T, Proc. R. Soc. Lond. A, 235 (1926)
  29. Paluch M, Adv. Colloid Interface Sci., 84, 27 (2000)
  30. Manciu M, Ruckenstein E, Colloids Surf. A: Physicochem. Eng. Asp., 400, 27 (2012)
  31. Garrett BC, Science, 303, 1146 (2004)
  32. Marcelja S, J. Phys. Chem. B, 110(26), 13062 (2006)
  33. Feng H, Zhou J, Lu X, Fichthorn KA, J. Chem. Phys., 133, 061103 (2010)