화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.211, No.2, 291-303, 1999
Effect of surfactants on the film drainage
Drainage of a partially mobile thin liquid film between two deformed and nondeformed gas bubbles with different radii is studied. The lubrication approximation is used to obtain the influence of soluble and insoluble surfactants on the velocity of film thinning in the case of quasi-steady state approach. The material properties of the interfaces (surface viscosity, Gibbs elasticity, surface diffusivity, and/or bulk diffusivity) are taken into account. In the case of deformed bubbles the influence of the meniscus is illustrated assuming simple approximated shape for the local him thickness. Simple analytical solutions for large and small values of the interfacial viscosity, and for deformed and nondeformed bubbles, are derived. The correctness of the boundary conditions used in the literature is discussed. The numerical analysis of the governing equation shows the region of transition from partially mobile to immobile interfaces. Quantitative explanation of the following effects is proposed: (i) increase of the mobility due to increasing bulk and surface diffusivities; (ii) role of the surface viscosity, comparable to that of the Gibbs elasticity; and (iii) significant influence of the meniscus on the film drainage due to the increased hydrodynamic resistance.