화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.10, No.12, 799-806, December, 2000
Cu 6 Sn 5 를 분산시켜 스크린 프린팅법으로 제조한 Sn-Pb 솔더범프의 전단강도
Shear Strength of the Cu 6 Sn 5 -dispersed Sn-Pb Solder Bumps Fabricated by Screen Printing Process
초록
63Sn-37Pb에 Cu 6 Sn 5 를 분산시킨 760 μm 크기의 솔더범프를 Au(0.5 μm )/Ni(5 μm )/Cu(27 ± 20 μm ) BGA 기판에 스크린)/Ni(5im)/Cu(27:201m) B3GA 기판에 스크린 프린팅법으로 제조하여, 리플로우 피크온도 유지시간, 15 0 ? C 시효처리 시간에 따른 전단강도를 분석하였다. Cu 6 Sn 5 를 첨가한 솔더범프는 피크온도에서 30초간 유지시에는 63Sn-37Pb 솔더범프보다 높은 전단강도를 나타내었으나, 피크온도 유지시간을 60초 이상으로 증가시킴에 따라 전단강도가 63Sn-37Pb 솔더범프보다 저하하였다. 전단시험 후 솔더범프의 파단면은 초기에 전단 균열의 점진적인 전파에 의해 발생된 파괴부위와 점진적 균열전파에 의한 면적 감소로 솔더범프가 급격히 떨어져 나가면서 발생한 파괴부위로 구분할 수 있었다 피크온도 유지시간, 15 0 ? C 시효처리 시간 및 Cu 6 Sn 5 첨가량에 무관하게 점진적 파괴모드에 의한 균열 전파길이가 증가할수록 솔더범프의 전단강도가 감소하였다.
Cu 6 Sn 5 -dispersed 63Sn-37Pb solder bumps of 760 μm size were fabricated on Au(0.5 μm )/Ni(5 μm )/Cu(27 ± 20 μm ) BGA substrates by screen printing process, and their shear strength were characterized with variations of dwell time at reflow peak temperature and aging time at 15 0 ? C . With dwell time of 30 seconds at reflow peak temperature, the solder bumps with Cu 6 Sn 5 dispersion exhibited higher shear strength than the value of the 63Sn-37Pb solder bump. With increasing the dwell time longer than 60 seconds, however the shear strength of the Cu 6 Sn 5 -dispersed solder bumps became lower than that the 63Sn-37Pb solder bumps. The failure surface of the solder bumps could be divided into two legions of slow crack propagation and critical crack propagation. The shear strength of the solder bumps was inversely proportional to the slow crack propagation length, regardless of the dwell time at peak temperature, aging time at 150 ? C and the volume fraction of Cu 6 Sn 5 dispersion.> 5/ dispersion.
  1. Distefano TH, Chip Scale Rev., 1, 20 (1997)
  2. Choi S, Bieler TR, Lucas JP, Subramanian KN, J. Electron. Mater., 28, 1209 (1999)
  3. Choi WK, Lee HM, J. Electron. Mater., 28, 1251 (1999)
  4. Zuruki AS, Chiu CH, Laihiri SK, J. Appl. Phys., 86, 4916 (1999)
  5. Lau JH, Lee SW, Ouyang C, Proc. Symp. Microelectronics, 599 (1999)
  6. Wiesse S, Feustel F, Rzepka S, Meusel E, Proc.Conf. Electron. Comp. Technol., 1015 (1999)
  7. Reno RC, Panunto MJ, Piekarski BH, J. Electron. Mater., 26, 11 (1997)
  8. Betrabet HS, McGee SM, McKinlay JK, Scripta Metall, 25, 2323 (1991)
  9. Marshall JL, Kucey G, Hwang J, Proc. 41st Electronic Comp. Technol. Conf., 647 (1991)
  10. Sastry SML, Peng TC, Lederich RJ, Jerina KL, Kuo CG, Proc. Technical Program NEPCON West, 1266 (1992)
  11. Marshall JL, Calderon J, Soldering Surface Mounting Technol., 26, 23 (1997)
  12. Kloeser J, Coskina P, Jung E, Ostmann A, Aschenbrenner R, Reichl H, Proc. Symp. Microelectronics, 1 (1999)
  13. Strandjord AJG, Popelar SF, Erickson CA, Proc. Symp. Microelectronics, 18 (1999)
  14. Howarth M, Silvester SA, Lacey M, Sivaygonathan K, IEEE/CPMT Int. Electronic Manuf. Technol. Symp., 178 (1999)
  15. Hwang JS, Solder Paste in Electronics Packaging/ VNR, pp.90, 1992 (1992)
  16. Hung SC, Zheng PJ, Lee SC, Lee JJ, IEEE/CPMT Int. Electron. Manuf. Technol. Symp., 7 (1999)
  17. Morris JW, Reynolds HL, Adv. Elec. Packaging, 2, 1529 (1997)
  18. Haji-Sheikh MJ, Ulz D, Cambell M, IEEE Trans. CPMT, 20A, 491 (1997)
  19. Darveaux R, Banerji K, Mawer A, Dody G, Lau JH(ed.), Reliability of Plastic Ball Grid Array Assembly in Ball Grid Array Technology/ McGraw-Hill, pp.400, 1995 (1995)
  20. Erich R, Coyle RJ, Wenger GM, Primavera A, IEEE/CPMT Int. Electronic Manuf. Technol. Symp., 16 (1999)
  21. Frear DR, Burchett SN, Morgan HS, Lau JH, The Mechanics of Solder Alloy Interconnects/ VNR, pp.65, 1994 (1994)
  22. Darveaux R, Banerji K, Mawer A, Dody G, Lau JH(ed.), Reliability of Plastic Ball Grid Array Assembly in Ball Grid Array Technology/ McGraw-Hill, pp.412, 1995 (1995)
  23. Ritchie RO, Thompson AW, Met. Trans., A16, 233 (1985)