- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.10, No.12, 793-798, December, 2000
SiCp/6061Al합금복합재료의 시효거동
Age-Hardening Behavior of SiCp Reinforced 6061 Aluminum Alloy Composites
초록
석출경화형 6061Al기지합금과 SiC입자크기를 0.7 μm 및 7.0 μm 로 변화시켜 강화한 SiCp/6061Al 합금복합재료의 시효 거동을 경도측정, DSC 시험 및 TEM관찰을 통하여 조사하였다. 17 0 ? C 에서 등온시효시 6061Al기지합금에 비하여 복합화한 0.7 μm SiCp/6061Al합금복합재료 및 7.0 μm SiCP/6061Al합금복합재료에서 최고경도에 도달하는 시간이 짧았으며, 또한 강화재의 크기가 큰 7.0 μm SiCp/6061Al합금복합재료에서 시효촉진이 보다 크게 나타났다. 이것은 복합화 및 SiC입자크기 증가에 따른 전위 밀도 상승에 기인한다. 6061Al기지합금 및 복합재료에서 최고시효처리시의 주강화상은 봉상의 중간상 β (Mg 2 Si)이며, β 상 생성의 활성화에너지는 복합화 및 SiG입자크기의 증가에 따라 감소되었다.
The age-hardening behavior of unreinforced 6061 Al alloy and SiCp/6061 Al alloy composites reinforced with different size of SiC particle (average diameter ; 0.7 μm and 7.0 μm ) was investigated by hardness measurement, calorimetric technique and transmission electron microscopy. At 17 0 ? C isothermal aging treatment, the peak aging time of 0.7 μm SiCp/6061Al alloy composite and 7.0 μm SiCp/6061Al alloy composite is shorter than that of unreinforced 6061Al alloy, and the aging of 7.0 μm SiCp/6061Al alloy composite is accelerated more than that of 0.7 μm SiCp/6061Al alloy composite. This acceleration is due to the increase of dislocation density by the compositeness with SiCp and the SiC particle size. In the peak aged condition, the major strengthening phase of these materials is intermediate β phase(Mg 2 Si), and the activation energy for the formation of β phase is considerably decreased by the compositeness with SiCp and the increasing of SiC Particle site.
Keywords:6061Al alloy;SiCp/6061Al alloy composite;SiC particle size;age-hardening behavior;activation energy
- Kashiwaya H, Composites '86,JSCM/ pp.529, 1986 (1986)
- Long TT;西村隆宣;逢坂達吉, 金屬學會誌/ v.52, pp.609, 1988 (1988)
- Arsenault RJ, Proc. Japan-U.S. CCM-Ⅲ/ pp.521, 1986 (1986)
- Suresh S, Christman T, Sugimura Y, Scripta Metall, 23, 1602 (1989)
- House MB, Meinert KC, Bhagat RB, J. Metals, 16, 24 (1991)
- Chawla KK, Esmaeili AH, Datye AK, Vasudevan AK, Scripta Metall, 25, 1315 (1991)
- Rack HJ, Proc. 6th. Int. Conf. on Composite Materials/ Elsevier Applied Science, v.2, pp.382, 1987 (1987)
- Vogelsang M, Arsenault RR, Fisheser RM, Mater. Trans. Jim., 17A, 379 (1986)
- Hong SK, Tezuka H, Kamio A, J. Jpn. Inst. Light Met., 328 (1993)
- Toda H, Kobayashi T, Niinomi M, J. Japan Inst. Metals, 56, 1303 (1992)
- Jacobs MH, J. Inst. Metals, 90, 57 (1962)
- Augis JA, Bennett JE, J.Thermal Anal., 13, 283 (1978)
- Yinnon H, Uhlmann DR, J. Non-Crystalline Solids, 54, 253 (1983)