화학공학소재연구정보센터
Polymer(Korea), Vol.38, No.2, 156-163, March, 2014
하이드록시아파타이트/락타이드 글리콜라이드 공중합체 지지체 조성에 따른 염증 완화 효과
Inflammatory Responses to Hydroxyapatite/Poly(lactic-co-glycolic acid) Scaffolds with Variation of Compositions
E-mail:,
초록
하이드록시아파타이트는 골 전도가 우수하고 생체 적합성이 우수하며 염증 반응을 일으키지 않아 임상에서 골이식재로 널리 사용되고 있다. 본 연구에서는 하이드록시아파타이트를 함유한 poly(lactic-co-glycolic acid) (PLGA) 지지체를 제조하였으며 생체 내/외의 실험을 통하여 골 이식재로서의 응용가능성을 평가하였다. 하이드록시아파타이트/PLGA 지지체는 0, 10, 20, 40 및 60 wt%의 함량으로 제조하였다. 기계적 특성을 알아보기 위하여 압축강도, SEM, FTIR을 측정하였으며 MTT, RT-PCR, FACS, 조직학적 염색(H&E, ED-1)을 실시하였다. 그 결과 하이드록시아파타이트를 함유한 PLGA 지지체에서 염증 반응이 감소하는 것을 확인할 수 있었으며 골 이식재로서의 가능성을 보여주었다.
Hydroxyapatite has osteoconductivity, biocompatibility and noninflammatory, and it has been used clinically as artificial bone. In this study, we prepared hydroxyapatite/poly(lactic-co-glycolic acid) (PLGA) scaffolds using 0, 10, 20, 40 and 60 wt% of hydroxyapatite. We analyzed compressive strength, SEM analysis and FTIR for mechanical property of 3D hydroxyapatite/PLGA scaffolds. For biocompatibility tests, cell proliferation and viability were measured via MTT assay and SEM. We analyzed RT-PCR, FACS, histology (H&E, ED-1) for anti-inflammatory effect. This study showed that hydroxyapatite hybrid scaffolds have low inflammatory reaction compared with the PLGA. This result has a potential for the application of artificial bone graft material.
  1. Liu C, Xia Z, Czernuszka JT, Chem. Eng. Res. Des., 85(A7), 1051 (2007)
  2. Ye Q, Ohsaki K, Li K, Li DJ, Zhu CS, Ogawa T, Tenshin S, Takano-Yamamoto T, Auris Nasus Larynx, 28, 131 (2001)
  3. Thevenot PT, Nair AM, Shen J, Lotfi P, Ko CY, Tang L, Biomaterials, 31, 3997 (2010)
  4. Zhang Y, Wu C, Luo T, Li S, Cheng X, Miron RJ, Bone, 51, 704 (2012)
  5. Buckner LR, Lewis ME, Greene SJ, Timothy AJQ, Foster P, Cytokine, 63, 151 (2013)
  6. Woo Y, Na K, Int. J. Tissue Regen., 3, 63 (2012)
  7. Boehler RM, Shin S, Fast AG, Gower RM, Shea LD, Biomaterials, 34, 5431 (2013)
  8. Neves SC, Teixeira LSM, Moroni L, Reis RL, Blitterswijk CAV, Alves NM, Karperien M, Mano JF, Biomaterials, 32, 1068 (2011)
  9. Caliari SR, Ramirez MA, Harley BAC, Biomaterials, 32, 8990 (2011)
  10. Yang DH, Park HN, Lee JB, Heo DN, Bae MS, Kwon IK, Int. J. Tissue Regen., 2, 125 (2011)
  11. Kim TH, Ko JH, Kim SJ, Park YH, Int. J. Tissue Regen., 2, 1 (2011)
  12. Yang Y, Zhao Y, Tang G, Li H, Yuan X, Fan Y, Polym. Degrad. Stabil., 93, 1838 (2008)
  13. Kim MS, Ahn HH, Shin YN, Cho MH, Khang G, Lee HB, Biomaterials, 28, 5137 (2007)
  14. Mou ZL, Zhao LJ, Zhang QA, Zhang J, Zhang ZQ, J. Supercrit. Fluids, 58(3), 398 (2011)
  15. Fathi MH, Hanifi A, Mortazavi V, J. Mech. Sci. Tech., 202, 536 (2008)
  16. Koshino T, Murase T, Takagi T, Saito T, Biomaterials, 22, 1579 (2001)
  17. Chang C, Peng N, He M, Teramoto Y, Nishio Y, Zhang L, Carbohydr. Polym., 91, 7 (2013)
  18. Ko YK, Kim SH, Jeong JS, Ha HJ, Yoon SJ, Rhee JM, Kim MS, Lee HB, Khang G, Polym.(Korea), 31(1), 14 (2007)
  19. Kim SJ, Hong HH, Kim SH, Kim HL, Kim SH, Khang G, Polym.(Korea), 34(1), 63 (2010)
  20. Lee S, Lee B, Kim H, Kim S, Eom YG, J. Korean Wood Sci. & Tech., 37, 310 (2009)
  21. Chen H, Yang W, Chen H, Liu L, Gao F, Yang X, Jiang Q, Zhang Q, Wang Y, Colloid Surface B, 73, 212 (2009)
  22. Nath SD, Son S, Sadiasa A, Min YK, Lee BT, Int. J. Pharm., 443, 87 (2013)
  23. Chang MC, Tanaka J, Biomaterials, 23, 4811 (2002)
  24. Wu CC, Huang ST, Tseng TW, Rao QL, Lin HC, J. Mol. Struct., 979, 72 (2010)
  25. Lee CW, Kim SG, Choi JY, Choi BD, Bae CS, Jeong SJ, Jeong MJ, Korean J. Electron Microscopy, 35, 121 (2005)
  26. Song Y, Yoo H, Eum S, Kim OY, Yoo SC, Kim HE, Lee D, Khang G, Polym.(Korea), 35(3), 189 (2011)
  27. Qin W, Feng J, Li Y, Lin Z, Shen B, Mol. Immunol., 44, 2355 (2007)
  28. Heravi RE, Hadizadeh F, Sankian M, Afshari JT, Taghdisi SM, Jafarian H, Behravan J, Eur. J. Pharm. Sci., 44, 479 (2011)
  29. Kahlon DK, Lansdell TA, Fisk JS, Tepe JJ, Bioorg. Med. Chem., 17, 3093 (2009)