Polymer(Korea), Vol.38, No.2, 156-163, March, 2014
하이드록시아파타이트/락타이드 글리콜라이드 공중합체 지지체 조성에 따른 염증 완화 효과
Inflammatory Responses to Hydroxyapatite/Poly(lactic-co-glycolic acid) Scaffolds with Variation of Compositions
E-mail:,
초록
하이드록시아파타이트는 골 전도가 우수하고 생체 적합성이 우수하며 염증 반응을 일으키지 않아 임상에서 골이식재로 널리 사용되고 있다. 본 연구에서는 하이드록시아파타이트를 함유한 poly(lactic-co-glycolic acid) (PLGA) 지지체를 제조하였으며 생체 내/외의 실험을 통하여 골 이식재로서의 응용가능성을 평가하였다. 하이드록시아파타이트/PLGA 지지체는 0, 10, 20, 40 및 60 wt%의 함량으로 제조하였다. 기계적 특성을 알아보기 위하여 압축강도, SEM, FTIR을 측정하였으며 MTT, RT-PCR, FACS, 조직학적 염색(H&E, ED-1)을 실시하였다. 그 결과 하이드록시아파타이트를 함유한 PLGA 지지체에서 염증 반응이 감소하는 것을 확인할 수 있었으며 골 이식재로서의 가능성을 보여주었다.
Hydroxyapatite has osteoconductivity, biocompatibility and noninflammatory, and it has been used clinically as artificial bone. In this study, we prepared hydroxyapatite/poly(lactic-co-glycolic acid) (PLGA) scaffolds using 0, 10, 20, 40 and 60 wt% of hydroxyapatite. We analyzed compressive strength, SEM analysis and FTIR for mechanical property of 3D hydroxyapatite/PLGA scaffolds. For biocompatibility tests, cell proliferation and viability were measured via MTT assay and SEM. We analyzed RT-PCR, FACS, histology (H&E, ED-1) for anti-inflammatory effect. This study showed that hydroxyapatite hybrid scaffolds have low inflammatory reaction compared with the PLGA. This result has a potential for the application of artificial bone graft material.
- Liu C, Xia Z, Czernuszka JT, Chem. Eng. Res. Des., 85(A7), 1051 (2007)
- Ye Q, Ohsaki K, Li K, Li DJ, Zhu CS, Ogawa T, Tenshin S, Takano-Yamamoto T, Auris Nasus Larynx, 28, 131 (2001)
- Thevenot PT, Nair AM, Shen J, Lotfi P, Ko CY, Tang L, Biomaterials, 31, 3997 (2010)
- Zhang Y, Wu C, Luo T, Li S, Cheng X, Miron RJ, Bone, 51, 704 (2012)
- Buckner LR, Lewis ME, Greene SJ, Timothy AJQ, Foster P, Cytokine, 63, 151 (2013)
- Woo Y, Na K, Int. J. Tissue Regen., 3, 63 (2012)
- Boehler RM, Shin S, Fast AG, Gower RM, Shea LD, Biomaterials, 34, 5431 (2013)
- Neves SC, Teixeira LSM, Moroni L, Reis RL, Blitterswijk CAV, Alves NM, Karperien M, Mano JF, Biomaterials, 32, 1068 (2011)
- Caliari SR, Ramirez MA, Harley BAC, Biomaterials, 32, 8990 (2011)
- Yang DH, Park HN, Lee JB, Heo DN, Bae MS, Kwon IK, Int. J. Tissue Regen., 2, 125 (2011)
- Kim TH, Ko JH, Kim SJ, Park YH, Int. J. Tissue Regen., 2, 1 (2011)
- Yang Y, Zhao Y, Tang G, Li H, Yuan X, Fan Y, Polym. Degrad. Stabil., 93, 1838 (2008)
- Kim MS, Ahn HH, Shin YN, Cho MH, Khang G, Lee HB, Biomaterials, 28, 5137 (2007)
- Mou ZL, Zhao LJ, Zhang QA, Zhang J, Zhang ZQ, J. Supercrit. Fluids, 58(3), 398 (2011)
- Fathi MH, Hanifi A, Mortazavi V, J. Mech. Sci. Tech., 202, 536 (2008)
- Koshino T, Murase T, Takagi T, Saito T, Biomaterials, 22, 1579 (2001)
- Chang C, Peng N, He M, Teramoto Y, Nishio Y, Zhang L, Carbohydr. Polym., 91, 7 (2013)
- Ko YK, Kim SH, Jeong JS, Ha HJ, Yoon SJ, Rhee JM, Kim MS, Lee HB, Khang G, Polym.(Korea), 31(1), 14 (2007)
- Kim SJ, Hong HH, Kim SH, Kim HL, Kim SH, Khang G, Polym.(Korea), 34(1), 63 (2010)
- Lee S, Lee B, Kim H, Kim S, Eom YG, J. Korean Wood Sci. & Tech., 37, 310 (2009)
- Chen H, Yang W, Chen H, Liu L, Gao F, Yang X, Jiang Q, Zhang Q, Wang Y, Colloid Surface B, 73, 212 (2009)
- Nath SD, Son S, Sadiasa A, Min YK, Lee BT, Int. J. Pharm., 443, 87 (2013)
- Chang MC, Tanaka J, Biomaterials, 23, 4811 (2002)
- Wu CC, Huang ST, Tseng TW, Rao QL, Lin HC, J. Mol. Struct., 979, 72 (2010)
- Lee CW, Kim SG, Choi JY, Choi BD, Bae CS, Jeong SJ, Jeong MJ, Korean J. Electron Microscopy, 35, 121 (2005)
- Song Y, Yoo H, Eum S, Kim OY, Yoo SC, Kim HE, Lee D, Khang G, Polym.(Korea), 35(3), 189 (2011)
- Qin W, Feng J, Li Y, Lin Z, Shen B, Mol. Immunol., 44, 2355 (2007)
- Heravi RE, Hadizadeh F, Sankian M, Afshari JT, Taghdisi SM, Jafarian H, Behravan J, Eur. J. Pharm. Sci., 44, 479 (2011)
- Kahlon DK, Lansdell TA, Fisk JS, Tepe JJ, Bioorg. Med. Chem., 17, 3093 (2009)