화학공학소재연구정보센터
Polymer(Korea), Vol.38, No.2, 164-170, March, 2014
천연 고분자가 함유된 락타이드 글리콜라이드 공중합체 필름에서 슈반세포의 부착과 증식 거동 비교평가
Comparison between Poly(lactic-co-glycolic acid) Films Contained Natural Polymers on Adhesion and Proliferation of Schwann Cells
E-mail:,
초록
본 연구에서는 신경세포인 슈반세포(SC)의 증식에 가장 적합한 생체재료를 연구하였다. 락타이드 글리콜라이드 공중합체(PLGA)에 탈미네랄 골분(demineralized bone particle, DBP), 소장점막하조직(small intestine submucosa, SIS), 그리고 실크를 각각 20% 첨가하여, 용매 증발법으로 각각의 필름을 제조하고, SC세포의 부착과 증식을 확인하기 위해 MTT, SEM 그리고 RT-PCR 분석을 실시하였다. 또한 필름의 친수성을 확인하기 위해 접촉각을 측정하였다. 분석 결과, PLGA/DBP 20% 필름에서 높은 친수성을 보였으며, SC의 부착과 증식률이 다른 군에 비해 크게 증가한 것을 확인할 수 있었다. 따라서 PLGA/DBP 필름은 중추신경재생 재료로 활용할 수 있을 것으로 사료된다.
This study was designed to find an appropriate biomaterial to proliferate Schwann cell (SC). Poly(lactic-coglycolic acid) (PLGA) films mixed with demineralized bone particle (DBP), small intestine submucosa (SIS), and silk were fabricated by a solvent casting method. Analysis of MTT, SEM and RT-PCR were performed to confirm adhesion and proliferation of SC. Contact angle of films was assayed for hydrophilicity of films. We confirmed that PLGA/DBP 20% film showed higher hydrophilicity, promoted adhesion and proliferation of SC than other films. It was concluded that PLGA/DBP film can be applied for the scaffold biomaterials for the regeneration of central nerve system.
  1. Xu XM, Chen A, Guenard V, Kleitman N, Bunge MB, Neurocytol, 26, 1 (1997)
  2. Salzer JL, Bunge RP, J. Cell Biology, 84, 739 (1980)
  3. Atala A, J. Endourol., 14, 49 (2000)
  4. Zhang N, Yan H, Wen X, Brain Res., 49, 48 (2005)
  5. Khang G, Jeon JH, Cho JC, Rhee JM, Lee HB, Polym.(Korea), 23(6), 861 (1999)
  6. Holland SJ, Tighe BJ, Could PL, J. Control. Res., 4, 155 (1986)
  7. Iwasaki Y, Sawada S, Nakabayashi N, Khang G, Lee HB, Ishihara K, Biomaterials, 20, 2185 (1999)
  8. Khang G, Lee SJ, Lee JH, Kim YS, Lee HB, Macromol. Res., 8, 276 (2000)
  9. Huggins CB, Urist MR, Science, 150, 893 (1970)
  10. Urist MR, Science, 167, 896 (1970)
  11. Hogan BL, Harvey Lect., 92, 83 (1996)
  12. Ebenbal T, Bengtsson H, Soderstrom S, J. Neurosci. Res., 51, 139 (1998)
  13. Lonn P, Zaia K, Israelsson C, Althini S, Usoskin D, Kylberg A, Ebendal T, Neurochem. Res., 30, 753 (2005)
  14. Khang G, Rhee JM, Shin P, Kim IY, Lee B, Lee SJ, Lee YM, Lee HB, Lee I, Macromol. Res., 10(3), 158 (2002)
  15. Badylak SF, Record R, Lindberg K, J. Biomater. Sci. Polym. Ed., 9, 863 (1998)
  16. Park KS, Jin CM, Yun SJ, Hong KD, Kim SH, Kim MS, Rhee JM, Khang G, Lee HB, Polym.(Korea), 29(5), 501 (2005)
  17. Chen J, Altman GH, Karageorgiou V, Horan R, Collette A, Volloch V, J. Biomed. Mater. Res., 67, 559 (2003)
  18. Jin HJ, Kaplan DL, Nature, 424, 1057 (2003)
  19. Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL, Biomacromolecules, 3(6), 1233 (2002)
  20. Soong HK, Kenyon KR, Ophthalmology, 91, 479 (1984)
  21. Panilaitis B, Altman GH, Chen J, Jang HJ, Karageorgiou V, Kaplan DL, Biomaterials, 24, 3079 (2003)
  22. Meinel L, Betz O, Fajardo R, Hofmann S, Nazarian A, Bone, 39, 922 (2006)
  23. Kim HL, Yoo H, Park HJ, Kim YG, Lee D, Kang YS, Khang G, Polym.(Korea), 35(1), 7 (2011)
  24. Porter S, Clark MB, Glaser L, Bunge RP, J. Neurosci., 6, 3070 (1986)
  25. Morrissey TK, Kleitman N, Bunge RP, J. Neurosci., 11, 2433 (1991)
  26. Kim HL, Kim SJ, Yoo H, Hong M, Lee D, Khang G, Int. J. Tissue Regen., 1, 81 (2010)
  27. Gu BK, Kim MS, Park SJ, Kim C, Int. J. Tissue Regen., 2, 83 (2011)
  28. Yamamoto M, Tabata Y, Int. J. Tissue Regen., 4, 36 (2013)