화학공학소재연구정보센터
Polymer(Korea), Vol.38, No.2, 150-155, March, 2014
PCL/TiO2 Nanoparticle 3차원 지지체 제조 및 특성 평가
Fabrication and Characterization of PCL/TiO2 Nanoparticle 3D Scaffold
E-mail:
초록
Polycaprolactone(PCL)은 생분해성 고분자로 인장강도, 신장률, 충격강도 등의 기계적 물성이 우수하다. TiO2 (titanium dioxide) nanoparticle은 친수성으로 밀도가 높고 생체적합성이 우수하다. 본 연구에서는 PCL과 TiO2(titanium dioxide) nanoparticle을 이용하여 salt-leaching방법으로 3차원 다공성 지지체를 제작하였다. 제작한 지지체를 FESEM, FTIR, TGA, 압축강도 측정 등을 통해 물성을 분석하였다. TiO2 nanoparticle에 의해 물흡수도와 팽윤도는 감소하였으나 압축강도는 증가하였다. CCK-8 assay를 통해 세포의 증식률을 확인한 결과, TiO2 nanoparticle에 의한 세포 독성은 없는 것으로 확인되었다. 이러한 연구결과는 PCL/TiO2 nanoparticle 지지체의 생체재료로 사용가능성을 제시하였다.
Polycaprolactone (PCL) is a synthetic biodegradable polymer with excellent mechanical properties. TiO2 (titanium dioxide) has a hydrophilic, high density and excellent biocompatibility. In this work, we produced three-dimensional porous scaffolds with PCL and TiO2 nanoparticles using a salt-leaching method. Physical properties of the scaffolds were analyzed by FE-SEM, FTIR, TGA and compressive strength. Interestingly, the addition of TiO2 nanoparticles decreased the water absorption and swelling ratio of the porous scaffolds. However, the compressive strength was increased by TiO2. CCK-8 assay, which is generally used for the analysis of cell growth, shows that TiO2 nanoparticles have no cytotoxicity. Taken together, we suggest that the PLC/TiO2-scaffold can be used for biomedical applications.
  1. Chan BP, Leong KW, Eur. Spine. J., 17, 467 (2008)
  2. Kim TG, Shin H, Lim DW, Adv. Funct. Mater., 22(12), 2446 (2012)
  3. Sachlos E, Czernuszka JT, Eur. Cell Mater., 12, 29 (2003)
  4. Blackwood KA, Bock N, Dargaville TR, Woodruff MA, Int. J. Polym. Sci., 25, 1 (2012)
  5. Sahoo S, Ang LT, Goh JCH, Toh SL, J. Biomed. Mater. Res. Part A, 12, 1539 (2009)
  6. Leor J, Amsalem Y, Cohen S, Pharmacol. Therapeut., 13, 151 (2005)
  7. Owen SC, Shoichet MS, Wiley Intersci., 11, 1321 (2010)
  8. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS, Int. J. Polym. Sci., 19, 1 (2011)
  9. Kim SH, Kim SH, Kim YH, Polymer Sci. Tech., 16, 468 (2005)
  10. Kumar G, Bristow JF, Smith PJ, Payne GF, Polymer, 12, 2157 (2000)
  11. Sell SA, Wolfe PS, Garg K, McCool JM, Rodriguez IA, Bowlin GL, Polymers, 2, 522 (2010)
  12. Egana AL, Scheibel T, Biotechnol. Appl. Biochem., 13, 155 (2010)
  13. Augst AD, Kong HJ, Mooney DJ, Macromol. Biosci., 6, 623 (2006)
  14. Rezwan K, Chen QZ, Blaker JJ, Ahluwalia A, Biomaterials, 27, 3413 (2006)
  15. Goldstein SA, J. Biomech., 20, 1055 (1987)
  16. Haghi M, Hekmatafshar M, Janipour MB, Gholizadeh SS, Faraz MK, Sayyadifar F, Ghaedi M, Intl. J. Adv. Biotechnol. Res., 3, 621 (2012)
  17. Wen Z, Ci S, Mao S, Cui S, Lu G, Yu K, Luo S, He Z, Chen J, J. Power Sources, 7, 100 (2013)
  18. Amna T, Hassan MS, Shin WS, Ba HV, Lee HK, Khil MS, Hwang IH, Colloid Surface B, 6, 424 (2012)
  19. Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C, Acta Biomater., 12, 904 (2011)
  20. Choi MS, Han HD, Seong H, Park ES, Chi SC, Shin BC, J. Korean Chem. Soc., 50, 3 (2006)