화학공학소재연구정보센터
Applied Surface Science, Vol.258, No.7, 2836-2843, 2012
Functionalization of vertically aligned carbon nanotubes with polystyrene via surface initiated reversible addition fragmentation chain transfer polymerization
Here we demonstrate the covalent attachment of vertically aligned (VA) acid treated single-walled carbon nanotubes (SWCNTs) onto a silicon substrate via dicyclohexylcarbodiimide (DCC) coupling chemistry. Subsequently, the pendant carboxyl moieties on the sidewalls of the VA-SWCNTs were derivatized to acyl chlorides, and then finally to bis(dithioester) moieties using a magnesium chloride dithiobenzoate salt. The bis(dithioester) moieties were then successfully shown to act as a chain transfer agent (CTA) in the reversible addition fragmentation chain transfer (RAFT) polymerization of styrene in a surface initiated "grafting-from" process from the VA-SWCNT surface. Atomic force microscopy (AFM) verified vertical alignment of the SWCNTs and the maintenance thereof throughout the synthesis process. Finally, Raman scattering spectroscopy and AFM confirmed polystyrene functionalization. (C) 2011 Elsevier B.V. All rights reserved.