화학공학소재연구정보센터
Polymer(Korea), Vol.36, No.3, 372-379, May, 2012
Bis[3-(trimethoxysilyl)propyl]amine 커플링제로 개질된 실리카 나노입자의 실란화도 정량 분석
Quantitative Analysis of Silanization Degree of Silica Nanoparticles Modified with Bis[3-(trimethoxysilyl)propyl]amine Coupling Agent
E-mail:
초록
본 연구에서는 실리카 나노입자의 표면을 실란 커플링제인 bis[3-(trimethoxysilyl)propyl]amine(BTMA)을 사용하여 개질하였다. BTMA의 가수분해 시간, 농도 및 개질 시간의 변화가 실리카 표면 개질 반응에 미치는 영향을 Fourier transform infrared spectroscopy(FTIR), elemental analysis(EA) 및 고체 상태 cross-polarization magic angle spinning(CP/MAS) nuclear magnetic resonance spectroscopy(NMR)법을 사용하여 분석을 수행하였다. 연구 결과 BTMA의 가수분해 시간, 농도 및 표면 개질 시간이 증가할수록 3737 cm^(-1)에 나타나는 실리카의 고립 실란올(isolated silanol) 피크의 세기는 점점 약해지고, 도입되는 BTMA의 -CH2 기에 의한 신축(stretching) 및 굽힘(bending) 진동 피크는 점점 강하게 나타났다. EA 분석을 통한 N 및 C의 함량에서도 같은 경향을 나타내었다. BTMA를 사용한 실리카 입자의 처리 조건 중, BTMA의 농도 변화는 실리카 입자 표면과 반응하는 BTMA의 양에 큰 영향을 미치지만, BTMA의 가수분해 시간 및 표면 개질 반응 시간의 영향은 크지 않은 것으로 나타났다.
In this study, we treated silica nanoparticles with bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to modify their surfaces. We investigated the effects of BTMA hydrolysis time, BTMA concentration and BTMA treatment time on the degree of silanization reaction of silica nanoparticles. We used Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to obtain quantitative data. We found the decrease of isolated Si-OH peak intensity at 3747 cm^(-1) and the increase of -CH2 stretching and bending peaks with increasing hydrolysis time, concentration and treatment time of BTMA. EA analysis results also supported this trend. We found a strong effect of BTMA concentration on the degree of silanization of the silica particles, but weak effects of the hydrolysis time and the treatment time.
  1. Ha CS, Park HD, Frank CW, Chem. Mater., 12, 839 (2000)
  2. Qi DM, Bao YZ, Huang ZM, Weng ZX, J. Appl. Polym. Sci., 99(6), 3425 (2006)
  3. Jin SH, Hong J, Kim I, Yun JH, Shim SE, Polym.(Korea), 35(4), 342 (2011)
  4. Murugavel R, Voigt A, Walawalkar MG, Roesky HW, Chem. Rev., 96(6), 2205 (1996)
  5. Dugas V, Chevalier Y, J. Colloid Interface Sci., 264(2), 354 (2003)
  6. Salon MCB, Belgacem MN, J. Colloid Surf. A., 366, 147 (2010)
  7. Salon MCB, Abdelmouleh M, Boufi S, Belgacem MN, Gandini A, J. Colloid Interface Sci., 289(1), 249 (2005)
  8. Kim JW, Kim CK, Polym.(Korea), 30(1), 75 (2006)
  9. Plueddemann EP, Silane Coupling Agents, Plenum Press, New York, 133 (1991)
  10. Metroke T, Wang Y, Wim J, Ooij V, Schaefer DW, J. Sol. Sci. Tech., 51, 23 (2009)
  11. Qi YS, Yang JW, Zeng ZH, Liao ZF, Chen YL, J. Appl. Polym. Sci., 98(4), 1500 (2005)
  12. Arkles B, Chemtech., 7, 766 (1977)
  13. Marrone M, Montanari T, Busca G, Conzatti L, Costa G, Castellano M, Turturro A, J. Phys. Chem., 108, 3563 (2004)
  14. El Hadad AA, Carbonell D, Barranco V, Morales AJ, Casal B, Galvan JC, Colloid Polym. Sci., 289, 1875 (2011)
  15. Proctor KG, Markway SJ, Garcia M, Armstrong CA, Gonzales CP, “Diffuse Reflectance FTIR Spectroscopic Study of Base Desorption from Thermally Treated Silica”, in Collodial Silica: Fundamentals and Applications, Bergna HE, Roberts WO, Editors, Taylor & Francis, New York, 385 (2006)
  16. Osterholtz FD, Pohl ER, “Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review”, in Silanes and Other Coupling Agents, Mittal KL, Editor, VSP BV, Utrecht, Netherlands, 119 (1992)
  17. “Silane Coupling Agent Guide”, United Chemical Technologies, Inc., Bristol, PA, USA.
  18. Vancant EF, Van Der Voort P, Vrancken KC, Characterization and Chemical Modification of The Silica Surface, Elsevier, Amsterdam, 93, 176 (1995)
  19. Derouet D, Thuc CNH, J. Appl. Polym. Sci., 109(4), 2113 (2008)