화학공학소재연구정보센터
Polymer(Korea), Vol.35, No.4, 342-349, July, 2011
비닐트리에톡시실란 함량에 따른 습식실리카로 충전된 실리콘 고무의 기계적 및 물리적 물성
Effect of Vinyltriethoxysilane Content on Mechanical and Physical Properties of Precipitated Silica Reinforced Silicone Rubber
E-mail:
초록
실리카의 표면 개질제인 vinyltriethoxysilane(VTEOS)의 함량에 따른 실리카로 보강된 실리콘 고무의 기계적 물성 변화 및 내열성, 내유성, 압축 영구줄음률, 반발탄성 및 가교밀도 변화를 연구하였다. 결과로 VTEOS의 함량이 2.0 phr까지 증가함에 따라 경도는 상승하였으나 인장강도, 파단신율, 인열강도가 감소하였다. 내열시험에서는 VTEOS의 함량이 증가될수록 경도변화, 인장강도 변화율, 파단신율 변화율이 크게 감소하였다. VTEOS 2.0 phr에서 가장 우수한 내열특성을 나타내었다. 또한 VTEOS의 함량이 증가될수록 실리콘 고무의 내유성이 증진되었으며, VTEOS 미첨가 시보다 경도 하락폭이 크게 낮았으며, 파단신율 변화율은 약 2배 이상 감소하였다. 반발탄성도 VTEOS의 함량이 증가될수록 우수하였으며, 압축 영구줄음률 역시 VTEOS가 증가될수록 감소였다. 가교시험 결과 VTEOS가 증가될수록 최대 토크값와 가교밀도가 크게 향상되었다.
The effect of the amount of vinyltriethoxysilane (VTEOS) in precipitated silica filled silicone rubbers was extensively investigated in terms of the change of mechanical properties, heat resistance, oil resistance, compression set, resilience, and curing characteristics. As the content of VTEOS increased from 0 to 2.0 phr, the hardness of the silicone rubber increased, however, tensile strength, elongation at break, and tear strength decreased. From heat resistance test, the change of mechanical properties was pronounced for silicone rubber treated with more VTOES. The best heat resistance was achieved at 2.0 phr VTOES. In addition, oil resistance was proportionally improved with VTEOS content. From oil resistance test, it was found that the decrease in hardness and maximum elongation was reduced for VTEOS-added systems. Finally, resilience, compression set, degree of cure and crosslink density were significantly enhanced with the amount of VTEOS.
  1. Caprino JC, Macander RF, Rubber Technology, 3rd Ed., Morton M, Editor, Van Nostrand Reinhold, New York, Ch. 13 (1987)
  2. Warrick EL, Rubber Chem. Technol., 49, 909 (1976)
  3. Lewis FM, Rubber Chem. Technol., 35, 1222 (1962)
  4. Noll W, Chemistry and Technology of Silicones, 2nd Ed., Academic Press, New York, 305 (1968)
  5. Polmanteer KE, Rubber Chem. Technol., 54, 1051 (1981)
  6. Polmanteer KE, Rubber Chem. Technol., 61, 470 (1988)
  7. Lee S, Song JS, Elastom. Compos., 44, 2 (2009)
  8. Boonstra B, Cochrane H, Dannenberg EM, Rubber Chem. Technol., 48, 558 (1975)
  9. Southwart DW, Polymer., 17, 147 (1976)
  10. Bang DS, Kye HS, Cho UR, Min BG, Shin KC, Elastom. Compos., 44, 1 (2009)
  11. Patole AS, Patole SP, Song MH, Yoon JY, Kim J, Kim TH, Elastom. Compos., 44, 34 (2009)
  12. Yim A, Chahal RS, St. Pierre LE, J. Colloid Interface Sci., 43, 583 (1973)
  13. Allen JP, Elastomerics., 115, 35 (1983)
  14. Iler RK, The Colloid Chemistry and Silica and Silicates, Cornell University Press, Ithaca, New York, 234 (1955)
  15. Wagner MP, Rubber Chem. Technol., 49, 703 (1976)
  16. Vondracek P, Schatz M, J. Appl. Polym. Sci., 21, 3211 (1977)
  17. Wituchi GL, J. Coat. Technol., 65, 57 (1993)
  18. Vogel BM, DeLongchamp M, Mahoney CM, Lucas LA, Fischer DA, Lin EK, Appl. Surf. Sci., 254(6), 1789 (2008)
  19. Kim H, Kim HG, Kim S, Kim SS, J. Membr. Sci., 344(1-2), 211 (2009)
  20. Love KT, Nicholson BK, Lloyd JA, Franich RA, Kibblewhite RP, Mansfield SD, Compos. Part A., 39, 1815 (2008)
  21. Yoon C, Lee J, Bang D, Won J, Jang I, Park W, Elastom. Compos., 45, 87 (2010)
  22. Kim ES, Kim EJ, Lee TH, Yoon JS, Elastom. Compos., 45, 260 (2009)
  23. Flory PJ, Rehner J, Jr., J. Chem. Phys., 18, 108 (1950)
  24. Kraus G, J. Appl. Polym. Sci., 7, 861 (1963)
  25. Shim SE, Isayev AI, Rubber Chem. Technol., 74, 303 (2001)