Industrial & Engineering Chemistry Research, Vol.50, No.22, 12426-12432, 2011
Autothermal Reforming of Methane in a Proton-Conducting Ceramic Membrane Reactor
Endothermic steam reforming of methane for hydrogen production requires heat input With selective oxidation of methane. Dense SrCe0.75Zr0.20Tm0.05O3-delta perovskite,Membranes:Were combined with a reforming catalyst to demonstrate the feasibility; of a heat-exchange membrane reactor for steam reforming of:methane coupled with selective :oxidation, of,,permeated hydrogen. The reforming catalyst Used was a prereduced nickel baud catalyst supported on gamma(1),-Al2O3. Hydrogen:produced via the, steam reforming of Methane or water gas shift reaction was able to diffuse through the catalyst bed and transport through the membrane: The permeated hydrogen:reacted with oxygen (from air), to produce heat for the steam reforming of Methane on the other side of the membrane. The Membrane reactor avoids the use of an expensive air separation unit to produce oxygen. The influence Of experimental conditions, such as temperature, gas hourly space velocity, and the steam to carbon (S/C) ratio, on the membrane reactor was investigated. SrCe0.75Zr0.20Tm0.5O3-delta showed good chemical stability in steam reforming conditions as X-ray diffraction analysis of the membrane :surface exposed to steam-reforming conditions for 425 h showed only minor CeO2 formation. The experimental data demonstrate the feasibility of using a proton Conducting ceramic membrane in the heat-exchange. membrane reactor, for steam reforming of methane coupled with selective oxidation.