화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.28, No.12, 2344-2350, December, 2011
Preparation and characterization of activated carbons for SO2 adsorption from Taixi anthracite by physical activation with steam
E-mail:
Taixi anthracite was used as a precursor to prepare activated carbons (AC) for SO2 adsorption from flue gas. In this work the activated carbons were prepared by physical activation with steam. Specifically, the effects of activation temperature and burn-off degree on the physico-chemical properties of the resulting AC samples were comparatively studied. The different types of pore volumes, pore size distributions and surface chemistries of the activated carbons on the SO2 adsorption were also analyzed. The results show that the increasing burn-off leads to samples with continuous evolution of all types of pores except ultramicropore. The ultramicropore volume increases to a maximum of 0.169 cm3/g at around 50% burn-off and then decreases for 850 ℃ activation. At higher activation temperature, the micropore volume decreases and the mesopore structure develops to a certain extent. For all the resulting AC samples, the quantities of the basic surface sites always appear much higher than the amount of the acidic sites. The activated carbon prepared with higher micropore volume, smaller median pore diameter and higher quantities of the basic surface sites represents better SO2 sorption property.
  1. Rau JY, Tseng HH, Chiang BC, Wey MY, Lin MD, Fuel., 89, 732 (2010)
  2. Li ZQ, Fan SB, Liu GK, Yang XH, Chen ZC, Su W, Energy Fuels., 24, 38 (2010)
  3. Li T, Zhuo Y, Lei J, Xu X, Korean J. Chem. Eng., 24(6), 1113 (2007)
  4. Wang Y, Huang Z, Liu Z, Liu Q, Carbon., 42, 445 (2004)
  5. Lopez D, Buitrago R, Sepnlveda-Escribano A, Rodriguez-Reinoso F, Mondragon FJ, Phys. Chem. C., 112, 15335 (2008)
  6. Raymundo-Pioero E, Cazorla-Amoros D, Linares-Solano A, Carbon., 39, 231 (2001)
  7. Davini P, Carbon., 39, 1387 (2000)
  8. Lizzio AA, DeBarr JA, Fuel., 75, 1515 (1996)
  9. Kang HY, Park SS, Rim YS, Korean J. Chem. Eng., 23(6), 948 (2006)
  10. Chattopadhyaya G, Macdonald DG, Bakhshi NN, Soltan JS, Dalai AK, Fuel Process. Technol., 87(11), 997 (2006)
  11. Ngernyen Y, Tangsathitkulchai C, Tangsathitkulchai M, Korean J. Chem. Eng., 23(6), 1046 (2006)
  12. Lyubchik SB, Benoit R, Beguin F, Carbon., 40, 1287 (2001)
  13. Belhachemi M, Rios RVRA, Addoun F, Silvestre-Albero J, Sepulveda-Escribano A, Rodriguez-Reinoso FJ, Anal. Appl. Pyrolysis., 86, 168 (2009)
  14. Pietrzak R, Fuel., 88, 1871 (2009)
  15. Izquierdo MT, Rubio B, Mayoral C, Andres JM, Fuel., 82, 147 (2003)
  16. Lizzio AA, Debarr JA, Energy Fuels, 11(2), 284 (1997)
  17. Daley MA, Magnum CL, DeBarr JA, Riha S, Lizzio AA, Donnals GL, Economy J, Carbon., 35, 411 (1997)
  18. Rodriguez-Reinoso F, Molina-Sabio M, Gonzalez MT, Carbon., 33, 15 (1995)
  19. Pastor-Villegas J, Duran-Valle CJ, Carbon., 40, 397 (2002)
  20. Lopez D, Buitrago R, Sepnlveda-Escribano A, Rodriguez-Reinoso F, Mondragon FJ, Phys. Chem. C., 111, 1417 (2007)
  21. Mangun CL, DeBarr JA, Economy J, Carbon., 39, 1689 (2001)
  22. Carabineiro SAC, Ramos AM, Vital J, Loureiro JM, Orfao JJM, Fonseca IM, Catal. Today, 78(1-4), 203 (2003)
  23. Boehm HP, Carbon., 32, 759 (1994)
  24. Seredych M, Deliyanni E, Bandosz TJ, Fuel., 89, 1499 (2010)