화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.23, No.6, 948-953, November, 2006
Preparation of activated carbon from paper mill sludge by KOH-activation
E-mail:
The purpose of this study is the preparation of activated carbon using paper mill sludge collected from biological wastewater treatment plant. The char produced from pyrolysis of paper mill sludge was chemically activated with potassium hydroxide. A systematic investigation of the effect of activation agent ratio, activation temperature and time on the properties of the char was carried out in a rotary kiln reactor. The chemically activated carbons were characterized by measuring iodine and methylene blue number and specific surface area. The activated carbon prepared from char of paper mill sludge in this study had maximum iodine and methylene blue number of 726.0 mg/g and 152.0mg/g, and specific surface area of 1,002.0 m2/g, respectively. The result of estimation on adsorption capacities of metals, the Freundlich isotherms, yields a fairly good fit to the adsorption data, indicating a monolayer adsorption of metals onto activated carbon prepared from char of paper mill sludge using a potassium hydroxide as the activating agents.
  1. Ahmadpour A, Do DD, Carbon, 34, 471 (1996)
  2. Ahmadpour A, King BA, Do DD, Ind. Eng. Chem. Res., 37, 1329 (1988)
  3. Arnold EG, Lenore SC, Andrew DE, Standard methods for the examination of water and wastewater, Part 3000, 3-1~15, 18th edition (1992)
  4. Bilal A, Akash W, O’Brien, Int. J. Energy Res., 20(10), 913 (1996)
  5. Caturla F, Molina-Sabio M, Rodriguez-Reinoso F, Carbon, 29, 999 (1991)
  6. Dubinin MM, In Chemistry and physics of carbon, 2, (Ed. P. L. Walker Jr.), Dekker, New York, 77-88 (1996)
  7. Gregg SJ, Sing KS, Adsorption, surface area and porosity, 2nd Ed., Academic Press, London, 195-247 (1982)
  8. Hong EH, Jung YH, Lee KH, Korean J. Chem. Eng., 17(2), 237 (2000)
  9. Grantz J, Valluri S, Soroush M, AIChE J., 44(7), 1701 (1998)
  10. Hu Z, Srinivasan MP, Microporous Mesoporous Mater., 27, 11 (1999)
  11. Ibarra JV, Moliner R, Palacios JM, Fuel, 70, 727 (1991)
  12. Jagtoyen M, Thwaites M, Stencel J, McEnaney B, Derbyshire F, Carbon, 30, 1089 (1992)
  13. Guo J, Lua AC, J. Colloid Interface Sci., 254(2), 227 (2002)
  14. Kenneth CL, Nasrin RK, Marta C, Giselle S, Thiyagarajan P, Chem. Mater., 14, 327 (2002)
  15. Kim JH, Wu SH, Pendleton P, Korean J. Chem. Eng., 22(5), 705 (2005)
  16. Laszlo K, Bota A, Nagy LG, Subklew G, Schwuger MJ, Physicochemical and Engineering Aspects, 138, 29 (1998) 
  17. Lee SH, Lee CD, Korean J. Chem. Eng., 18(1), 26 (2001)
  18. Li-Yeh H, Hsisheng T, Fuel Process. Technol., 64, 154 (2000)
  19. Morenocastilla C, Carrascomarin F, Lopezramon MV, Langmuir, 11(1), 247 (1995)
  20. Otowa T, Yamada M, Tanibata R, Kawakami M, Gas separation technology, Proceeding of the International Symposium on Gas Separation Technology (E. F. Vansant and R. Dewolfs, Eds.), p 263, Elsevier, Amsterdam/New York, 293 (1990)
  21. DiPanfilo R, Egiebor NO, Fuel Process. Technol., 46(3), 157 (1996)
  22. Sai PM, Ahmed J, Krishnaiah K, Ind. Eng. Chem. Res., 36(9), 3625 (1997)
  23. Thomas JM, Thomas WJ, Principles and practice of heterogeneous catalysis, VCH Verlagsgesellschaft mbH, Weinheim; Federal Republic of Germany, 267-275 (1997)
  24. Tsai WT, Chang CY, Wang SY, Chang CF, Chien SF, Sun HF, J. Env. Sci. Health, 36, 677 (2001)