Korean Journal of Chemical Engineering, Vol.28, No.3, 723-730, March, 2011
Two-step continuous synthesis of tetraethylthiuram disulfide in microstructured reactors
E-mail:
We present two-step continuous synthesis of tetraethyl thiuram disulfide using microstructured reactors, starting with the formation of N, N-diethyldithiocarbamic acid from carbon disulfide and diethylamine in the first mi- crostructured reactor, and the oxidation of N, N-diethyldithiocarbamic acid by hydrogen peroxide in the second one. We studied the effects of reaction temperature, LHSV and total flow rate on the yield of the product. In the first microstructured reactor assembled with an HPIMM micromixer and a stainless steel capillary as the delay loop, the yield of N, N-diethyldithiocarbamic acid reached 96.3% in the 40 wt% diethylamine ethanol solution under reaction conditions of the CS2/(C2H5)2NH molar ratio of 1.1 : 1, total flow rate of 4 mL/min, LHSV of 42.4 h^(-1), and reaction temperature of 25 ℃. Consequently, the obtained N, N-diethyldithiocarbamic acid solution was reacted with H2O2 solution in another microstructured
reactor assembled with SIMM-V2 and a PTFE capillary as the delay loop, the yield of the high purity tetraethylthiuram disulfide reached 89.3% under the optimized reaction conditions.
Keywords:Microstructured Reactor;N;N-diethyldithiocarbamic Acid;Tetraethylthiuram Disulfide;Vulcanization Accelerator;Strongly Exothermal
- Akiba M, Hashim AS, Prog. Polym. Sci., 22, 475 (1997)
- Gradwell MHS, Grooff D, J. Appl. Polym. Sci., 83, 1119 (2001)
- Akron AB and Tazuma JJ, US Patent, 4,144,272 (1979)
- FLEXSYS, WO Patent, 0,050,393 (2000)
- Torii S, Tanakea H and Mishima K, US Patent, 4,120,764 (1978)
- Hessel V, Hofmann C, Lowe H, Meudt A, Scherer S, Schonfeld F, Werner B, Org. Process Res. Dev., 8, 511 (2004)
- Hessel V, Hofmann C, Lob P, Lowe H, Parals M, Chem. Eng. Technol., 30(3), 355 (2007)
- Benz K, Jackel KP, Regenauer KJ, Schiewe J, Drese K, Ehrfeld W, Hessel V, Lowe H, Chem. Eng. Technol., 24(1), 11 (2001)
- Jahnisch K, Hessel V, Lowe H, Baerns M, Angew. Chem. Int. Ed., 43, 406 (2004)
- Muller A, Drese K, Gnaser H, Hampe M, Hessel V, Lowe H, Schmitt S, Zapf R, Catal. Today, 81(3), 377 (2003)
- Hessel V, Lowe H, Stange T, Lab Chip., 2, 14N (2002)
- Zhang X, Jones P, Haswell SJ, Chem. Eng. J., 135, S82 (2008)
- Shui LL, Eijkel JCT, van den Berg A, Sens. Actuators, B., 121, 263 (2007)
- Yoshida JI, Nagaki A, Yamada T, Chem. Eur. J., 14, 7450 (2008)
- Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT, Chem. Rev., 107(6), 2300 (2007)
- Kobayashi J, Mori Y, Kobayashi S, Chem. Asian J., 1, 22 (2006)
- Rumi L, Pfleger C, Spurr P, Klinkhammer U, Bannwarth W, Process Res. Dev., 13, 747 (2009)
- Taghavi-Moghadam S, Kleemann A, Golbig KG, Process Res. Dev., 5, 652 (2001)
- Kusakabe K, Morooka S, Maeda H, Korean J. Chem. Eng., 18(3), 271 (2001)
- Lowe H, Hessel V, Lob P, Hubbard S, Process Res. Dev., 10, 1144 (2006)
- van der Linden JJM, Hilberink PW, Kronenburg CMP, Kemperman GJ, Process Res. Dev., 12, 911 (2008)
- Pelleter J, Renaud F, Process Res. Dev., 13, 698 (2009)
- Sotowa KI, Miyoshi R, Lee CG, Kang Y, Kusakabe K, Korean J. Chem. Eng., 22(4), 552 (2005)
- Yao XJ, Yao JF, Zhang LX, Xu NP, Catal. Lett., 132(1-2), 147 (2009)
- Chen ZQ, Mod. Chem. Ind., 2, 25 (1991)
- Hang DY, Ye K, Fine Chem. Intermed., 34, 54 (2004)
- Kandlikar SG, Exp. Therm Fluid Sci., 26, 389 (2002)