Korean Journal of Chemical Engineering, Vol.28, No.3, 717-722, March, 2011
Preparation of well-dispersed and anti-oxidized Ni nanoparticles using polyamioloamine dendrimers as templates and their catalytic activity in the hydrogenation of p-nitrophenol to p-aminophenol
E-mail:
p-Aminophenol was synthesized by catalytic hydrogenation of p-nitrophenol on Ni nanoparticles prepared by a chemical reduction method using polyamidoamine (PAMAM) dendrimers as templates. The as-prepared Ni nanoparticles were characterized by XRD, LRS, EDS, FTIR, FESEM, HRTEM and N2 sorption analysis. Smaller-sized, better-dispersed and more active Ni nanoparticles can be successfully achieved using PAMAM dendrimers as templates. Analysis results show the as-prepared Ni nanoparticles are pure f.c.c. nickel. In hydrogenation reactions of p-nitrophenol, Ni nanoparticles show higher catalytic activity than that of Ni nanoparticles prepared in the absence of PAMAM dendrimers. The weight ratio of PAMAM/Ni2+ is proved to be an important parameter on the catalytic activity of Ni nanoparticles and the optimal ratio is 15%. The reason proposed for higher catalytic activity of Ni nanoparticles is a combination effect of smaller particle size, better dispersion and more active Ni nanoparticles.
- Chaudhari RV, Divekar SS, Vaidya MJ and Rode CV, Single step process for the preparation of p-aminophenol, US6028227, US (2000)
- Lee LT, Chen MH and Yao CN, Process for manufacturing paminophenol, US4885389, US (1998)
- Rode CV, Vaidya MJ, Jaganathan R, Chaudhari RV, Chem. Eng. Sci., 56(4), 1299 (2001)
- Vaidya MJ, Kulkarni SM, Chaudhari RV, Org. Process Res.Dev., 7, 202 (2003)
- Chen RZ, Du Y, Chen CL, Xing WH, Xu NP, Chen CX, Zhang ZL, J. Chem. Ind. Eng. (Chinese)., 54, 704 (2003)
- Du Y, Chen HL, Chen RZ, Xu NP, Appl. Catal. A: Gen., 277(1-2), 259 (2004)
- Du Y, Chen HL, Chen RZ, Xu NP, Chem. Eng. J., 125(1), 9 (2006)
- Chen RZ, Wang QQ, Du Y, Xing WH, Xu NP, Chem. Eng. J., 145(3), 371 (2009)
- Lu HH, Yin HB, Liu YM, Jiang TS, Yu LB, Catal. Commun., 10, 313 (2008)
- Ma ZY, Zhang LX, Chen RZ, Xing WH, Xu NP, Chem. Eng. J., 138(1-3), 517 (2008)
- Zheng HG, Liang JH, Zeng JH, Qian YT, Mater. Res. Bull., 36(5-6), 947 (2001)
- Nandi A, Gupta MD, Banthia AK, Mater. Lett., 52, 203 (2002)
- Houa Y, Gao S, J. Mater. Chem., 13, 1510 (2003)
- Yu K, Kim DJ, Chung HS, Liang H, Mater. Lett., 57, 3992 (2003)
- Wang AL, Yin HB, Lu HH, Xue JJ, Ren M, Jiang TS, Langmuir, 25(21), 12736 (2009)
- Esfand R, Tomalia DA, Drug Discovery Today., 6, 427 (2001)
- Stiriba SE, Frey H, Haag R, Angew. Chem. Int. Ed., 41, 1329 (2002)
- Auten BJ, Hahn BP, Vijayaraghavan G, Stevenson KJ, Chandler BD, J. Phys. Chem. C., 112, 5365 (2008)
- Jiang YJ, Gao QM, J. Am. Chem. Soc., 128(3), 716 (2006)
- Knecht MR, Garcia-Martinez JC, Crooks RM, Langmuir, 21(25), 11981 (2005)
- Reynhardt JPK, Yang Y, Sayari A, Alper H, Chem. Mater., 16, 4095 (2004)
- Hendricks TR, Dams EE, Wensing ST, Lee I, Langmuir, 23(13), 7404 (2007)
- Rar A, Zhou JN, Liu WJ, Barnard JA, Bennett A, Street SC, Appl. Surf. Sci., 175, 134 (2001)
- Knecht MR, Garcia-Martinez JC, Crooks RM, Chem. Mater., 18, 5039 (2006)
- Tomalia DA, Baker H, Dewald JR, Hall MJ, Kallos G, Martin SJ, Roeck J, Ryder J, Smith P, Polym. J. (Japan)., 17, 117 (1985)
- Desilvestro J, Corrigan DA, J. Electrochem. Soc., 135, 885 (1988)
- Liu ZL, Wang XD, Wu HY, Li CX, J. Colloid Interface Sci., 287(2), 604 (2005)