Journal of the American Chemical Society, Vol.130, No.47, 15746-15746, 2008
Allosteric Effects on Substrate Dissociation from Cytochrome P450 3A4 in Nanodiscs Observed by Ensemble and Single-Molecule Fluorescence Spectroscopy
Cytochrome P450 (CYP) 3A4 is a major human drug-metabolizing enzyme and displays pharmacologically relevant allosteric kinetics caused by multiple substrate and/or effector binding. Here, in the first single-molecule (SM) fluorescence studies of CYPs, we use total internal reflection fluorescence microscopy to measure residence times of the fluorescent dye Nile Red in CYP3A4 incorporated in surface-immobilized lipid Nanodiscs, with and without the effector alpha-naphthoflavone. We find direct evidence that CYP3A4 effectors can decrease substrate off-rates, providing a possible mechanism for effector-mediated enhancement of substrate metabolism. These interesting results highlight the potential of SM methods in studies of CYP allosteric mechanisms.