Applied Surface Science, Vol.255, No.8, 4670-4672, 2009
Metal nanorod production in silicon matrix by electroless process
Metal filled Si nanopores, that is, metal nanorods in an Si matrix, are produced by an electroless process that consists of three steps: (1) electroless displacement deposition of metal nanoparticles from a metal salt solution containing HF; (2) Si nanopore formation by metal-particle-enhanced HF etching; and (3) metal filling in nanopores by autocatalytic electroless deposition. Ag nanoparticles produce Si nanopores whose sizes are a few tens of nm in diameter and ca. 50 nm deep. Au nanoparticles produce finer and straighter nanopores on Si than the Ag case. These nanopores are filled with a Co or a Co-Ni alloy by autocatalytic deposition using dimethylamine-borane as a reducing agent. Phosphinate can be used as a reducing agent for the Au-deposited-and-pore-formed Si. The important feature of this process is that the metal nanoparticles, that is, the initiation points of the autocatalytic metal deposition, are present on the bottoms of the Si nanopores. (C) 2008 Elsevier B.V. All rights reserved.
Keywords:Metal nanoparticle;Porous silicon;Metal-particle-enhanced HF etching;Electroless deposition;Magnetic recoding;Cobalt