화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.4, 605-613, July, 1997
PET 필름 중의 DMF 확산과 용매유도 결정화
The Solvent Induced Crystallization and Diffusion Behavior of DMF in Poly(ethylene terephthalate) Film
초록
PET의 용매에 의한 결정화(solvent induced crystallizallon, SINC) 거동을 규명하기 위하여 PET와 DMF의 상용성 및 확산거동의 변화로부터 결정화를 발생케 하는 주원인을 살펴보았다. 확산거동은 Kelley-Bueche식과 Alfrey와 Vrentas가 제안한 확산거동 기구의 해석을 사용하여 지금까지는 용매에 의한 결정화에서 용매의 확산거동을 단순한 apparent-Fickian 거동으로만 설명하던 것을 세분하여 설명할 수 있었다. 상용성이 강한 DMF의 확산은 대부분 유리전이온도 이상에서 농도에 의존하는 Fickian 거동을 보였으나 처리온도 25 ℃이하에서 고연신 PET 필름의 경우 DMF의 확산은 non-Fickian 확산거동을 보였다. Moving boundary가 관찰되었는데 이는 Fickian 거동에서 나타나는 특성과는 다른 것으로 이는 결정화시 수반되는 기공에 의한 것이라는 것을 확인하였다. 이런 결과에 따라 용매에 의한 결정화는 고분자와 용매의 상용성과 화산거동에 의해 좌우됨을 알 수 있었다. 즉 DMF의 경우는 용매가 PET 필름에서 확산됨에 따라 PET의 결정화가 진행됨이 관찰되 었다.
The solvent induced crystallization (SINC) behavior of poly(ethylene terephthalate)(PET) films is investigated by monitoring the diffusion behavior of DMF in PET films. The diffusion behavior of DMF in PET films can be interpreted in more detail, which has been simply regarded as an apparent Fickian behavior so far. Usins the Kelly-Buche equation and adopting classification scheme of Alfred and Vrentas, diffusion of DMF shows the concentration dependent Fickian behavior over the whole temperature range investigated except for the highly drawn film in which the non-Fickian process is observed at low temperture. The moving boundary observed in the DMF diffusion process, which is in conflict with the Fickian behavior, is confirmed to be due to the void formation at the solvent front. According to the abode results, the crystallization behavior is found to be strongly pendent on the solvent quality and diffusion Process. The crystallization Proceeds readily in DMF with the solvent diffusion into PET films.
  1. Alfrey T, Gurnee EF, Lloyd WG, J. Polym. Sci. C: Polym. Lett., 12, 249 (1966)
  2. Frisch HL, J. Polym. Sci. A: Polym. Chem., 2, 7 (1969)
  3. Sfirakis A, Rogers CE, Polym. Eng. Sci., 21, 542 (1981) 
  4. Ribnick S, Weigmann HD, Rebenfeld L, Text. Res. J., 42, 720 (1972)
  5. Desai AB, Wilkes GL, J. Polym. Sci. Polym. Symp., 46, 291 (1974)
  6. Hildebrand JH, Scott RL, "The Solubility of Nonelectroytes," ed. by Reinhold Publ. Corp., 3rd ed. (1949)
  7. Knox BH, Weigmann HD, Scott MG, Text. Res. J., 45, 203 (1975)
  8. Flory PJ, "Principles of Polymer Chemistry," ed. by George Banta, Inc., p. 495, Ithaca, New York (1971)
  9. Lee YM, Kim KH, Im SS, Polym.(Korea), 17(3), 275 (1993)
  10. Lee YM, Kim HD, Im SS, Kim JW, Polym.(Korea), 17(4), 441 (1993)
  11. Lee YM, Lee SH, In SS, Kim JW, Polym.(Korea), 17(5), 569 (1993)
  12. Lee YM, Lee KW, Im SS, J. Korean Fiber Soc., 33(5) (1996)
  13. Makarewicz PJ, Wilkes GL, J. Polym. Sci., 16, 1529 (1978)
  14. Crank J, "The Mathematics of Diffusion," ed. by Oxford University Press, 2nd ed., p. 105, Bristol, England (1975)
  15. Vrentas JS, Jarzebski CM, Duda JL, ALCHE J., 21, 894 (1975)
  16. Vrentas JS, Duda JL, Macromolecules, 9, 785 (1976) 
  17. Astarita G, Sarti GC, Polym. Eng. Sci., 18, 388 (1978) 
  18. Gostoli C, Sarti GC, Polym. Eng. Sci., 22, 1018 (1982) 
  19. Thomas NL, Windle AH, Polymer, 21, 613 (1980) 
  20. Thomas NL, Windle AH, Polymer, 23, 529 (1982) 
  21. Durning CJ, Rebenfeld L, Russel WB, Weigmann HD, J. Polym. Sci. B: Polym. Phys., 24, 1341 (1986) 
  22. Biros J, Zemand L, Patterson D, Macromolecules, 4, 30 (1971) 
  23. Kelley FN, Bueche F, J. Polym. Sci., 1, 549 (1961)
  24. Macknight WJ, "Introduction to Polymer Viscoelasticity," ed., by John Wiley & Sons, 2nd ed., p. 65 (1983)
  25. Kambour RP, Gruner CL, Ramagosa EE, Macromolecules, 7, 248 (1974) 
  26. Ware RA, Tirtowidjojo S, Cohen C, J. Appl. Polym. Sci., 26, 2975 (1981) 
  27. Lee YM, Im SS, J. Korean Fiber Soc., 33(5) (1996)
  28. Thomas NL, Windle AH, Polymer, 19, 255 (1978) 
  29. Joshi S, Astarita G, Polymer, 20, 1217 (1979)