Korea-Australia Rheology Journal, Vol.21, No.2, 109-117, June, 2009
Effect of the rheological properties of aqueous xanthan gum solution on chemical absorption of carbon dioxide with diisopropanolamine
E-mail:
Absorption rate of carbon dioxide was measured in the aqueous xanthan gum (XG) solution in the range of 0~ 0.15 wt% containing diisopropanolamine (DIPA) of 0~ 2 kmol/m3 in a flat-stirred vessel with an impeller of 0.05 m and agitation speed of 50 rpm at 25 ℃ and 101.3 kPa. The volumetric liquid-side mass transfer coefficient (k(L)a) of CO2, which was obtained by the measured physical absorption rate, was correlated with the viscosity and the elastic behavior of XG solution such as Deborah number as an empirical formula. The chemical absorption rate of CO2 (R(A)), which was estimated by the film theory using the measured k(L)a and the known kinetics of reaction between CO2 and DIPA, was compared with the measured rate. The aqueous XG solution with elastic property of non-Newtonian liquid made k(L)a and R(A) increased compared with Newtonian liquid based on the same viscosity of the solution.
- Cussler EL, Diffusion, Cambridge University Press, New York, 118. (1984)
- Danckwerts PV, Gas-Liquids Reactions, McGraw-Hill Book Co, New York, 117. (1970)
- Danckwerts PV, Sharma MM, Chem. Eng., 44, 244 (1966)
- Galindo E, Nienow AW, Biochem. Prog., 8, 233 (1992)
- Garcia-Ochoa F, Gomez E, Biochem. Eng. J., 1, 1 (1998)
- Herbst H, Schumpe A, Decker W, Chem. Eng. Technol., 15, 425 (1992)
- Hikita H, Asai S, Takatsuka T, Chem. Eng. J., 11, 131 (1976)
- Kennard ML, Meisen A, J. Chem. Eng. Data, 29, 309 (1984)
- Kessler WR, Popovic MK, Robinson CW, Can. J. Chem. Eng., 71, 101 (1993)
- Metzner AB, Otter RE, AIChE J., 3, 3 (1957)
- Messaoudi B, Sada E, J. Chem. Eng. Jpn., 29(1), 193 (1996)
- Moo-Young M, Kawase Y, Can. J. Chem. Eng., 65, 113 (1987)
- Nakanoh M, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 19, 190 (1980)
- Nijsing RATO, Hendriksz RH, Kramers H, Chem. Eng. Sci., 10, 88 (1959)
- Park SW, Sohn IJ, Park DW, Oh KJ, Sep. Sci. Technol., 38(6), 1361 (2003)
- Park SW, Kim TY, Choi BS, Lee JW, Korea-Aust. Rheol. J., 16(1), 35 (2004)
- Park SW, Choi BS, Lee JW, Korea-Aust. Rheol. J., 17(4), 199 (2005)
- Park SW, Choi BS, Lee JW, Korea-Aust. Rheol. J., 18(3), 133 (2006)
- Park SW, Choi BS, Lee JW, J. Ind. Eng. Chem., 13(1), 7 (2007)
- Park SW, Choi BS, Song KW, Oh KJ, Lee JW, Sep. Sci., Technol., 42, 3537 (2007)
- Park SW, Choi BS, Song KW, Lee JW, Korea-Aust. Rheol. J., 20(1), 1 (2008)
- Park SW, Choi BS, Lee JW, J. Ind. Eng. Chem., 14(3), 303 (2008)
- Pons A, Dussap CG, Gros JB, Biotechnol. Bioeng., 33, 394 (1989)
- Ranade VR, Ulbrecht JJ, AIChE J., 24, 796 (1978)
- Sandall OC, Patel KG, Ind. Eng. Chem. Process Des. Dev., 9, 139 (1970)
- Sandford A, Baird J, The polysaccharides in Molecular Biotechnology, G. O. Aspinall, Ed., Vol. 2, Academic Press, New York, 401. (1983)
- Song KW, Kuk HY, Chang GS, Korea-Aust. Rheol. J., 18(2), 67 (2006)
- Suh IS, Schumpe A, Decker W, Biotechnol. Bioeng., 39, 85 (1992)
- Terasaka K, Shibata H, Chem. Eng. Sci., 58(23-24), 5331 (2003)
- Totiwachwuthikul P, Meisen A, Lim CJ, J. Chem. Eng. Data, 36, 130 (1991)
- Vashitz O, Ulitzur S, Sheituch M, Chem. Eng, Sci., 43, 1883 (1988)
- Vashitz O, Sheituch M, Ulitzur S, Biotechnol. Bioeng., 34, 671 (1989)
- Versteeg GF, van Swaaij WPM, Chem. Eng. Sci., 43, 573 (1988)
- Yagi H, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 14, 488 (1975)
- Yu WC, Astarita G, Savage DW, Chem. Eng. Sci., 40, 1585 (1985)