화학공학소재연구정보센터
Polymer(Korea), Vol.33, No.2, 97-103, March, 2009
기능화된 탄소나노튜브를 이용한 초고분자량 폴리에틸렌 복합체 필름: 열적·기계적 성질, 모폴로지, 전기적 성질 및 기체 투과도
Ultrahigh Molecular Weight Polyethylene Hybrid Films with Functionalized-MWNT: Thermomechanical Properties, Morphology, Gas Permeability, and Optical Transparency
E-mail:
초록
기능화 탄소나노튜브인 4-cumylphenol-MWNT(CP-MWNT)를 이용하여 초고분자량 폴리에틸렌(ultra high molecular weight polyethylene(UHMWPE))/CP-MWNT 복합체 필름을 용액 삽입법을 이용하여 제조하였다. 0에서 2.00 wt%까지의 서로 다른 CP-MWNT의 농도에 따라 만들어진 복합체 필름의 열적, 기계적, 기체 투과도 및 광학 투명성 등의 변화를 시차주사열량계, 열중량분석기, 전계 방사형 주사전자현미경과 인장시험기를 사용하여 측정하였다. 복합체 필름은 기능화된 탄소나노튜브를 소량 첨가하여도 열역학적 특성이 향상되는 것을 확인할 수 있으며 0.50에서 1.00 wt%의 농도에서 최대값을 가진다. CP-MWNT의 농도가 1.00 wt%일 때 필름의 산소 기체 차단성은 최대 향상을 나타내었다. 전체적으로는 CP-MWNT가 첨가된 복합체 필름의 열적-기계적 성질 및 기체투과도 등은 순수한 UHMWPE보다 더 향상되었다.
Ultra-high molecular weight polyethylene (UHMWPE)/functionalized-MWNT hybrid films were prepared by the solution intercalation method, using 4-cumylphenol-MWNT (CP-MWNT) as the functionalized-MWNT. The variation of the thermomechanical properties, morphology, gas permeability, and optical transparency of the hybrid films with CP-MWNT content in the range of 0∼2.00 wt% were examined. The newly synthesized UHMWPE/functionalized-MWNT hybrid films were characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and a universal tensile machine (UTM). It was found that the addition of only a small amount of functionalized-MWNT was sufficient to improve the thermomechanical properties of the UHMWPE hybrid films, with maximum enhancement being observed in the CP-MWNT loading in the range 0.50 to 1.00 wt%. The maximum enhancement in the oxygen gas barrier was also found at the functionalized MWNT content of 1.00 wt%. In this work, the thermomechanical properties and gas permeability of the hybrid films were found to be better than those of pure UHMWPE.
  1. Wang LH, Ottani S, Porter RS, Polymer, 32, 1776 (1991)
  2. Barbour PS, Stone MH, Fisher J, Biomaterials, 20, 2101 (1999)
  3. Ruan SL, Gao P, Yu TX, Polymer, 47(5), 1604 (2006)
  4. Lemstra PJ, Kirschbaum R, Ohta T, Yasuda H, in Developments in Oriented Polymers-2, Ward IM, Editor, New York, Elsevier Applied Science Publishers, Chap. 2 (1987)
  5. Xie XL, Mai YW, Zhou XP, Mat. Sci. Eng., 49, 89 (2005)
  6. Du JH, Bai J, Cheng HM, Express Polymer Letters, 1, 253 (2007)
  7. Wang Y, Wu J, Wei F, Carbon, 41, 2939 (2003)
  8. Gao C, Vo CD, Jin YZ, Li WW, Armes SP, Macromolecules, 38(21), 8634 (2005)
  9. Kong H, Gao C, Yan DY, Macromolecules, 37(11), 4022 (2004)
  10. Sun YP, Huang W, Lin Y, Fu K, Kitaygorodskiy A, Riddle LA, Yu YJ, Carroll DL, Chem. Mater., 13, 2864 (2001)
  11. Song WH, Zheng Z, Tang WL, Wang XF, Polymer, 48(13), 3658 (2007)
  12. Liu YQ, Yao ZL, Adronov A, Macromolecules, 38(4), 1172 (2005)
  13. Guo GQ, Yang D, Wang CC, Yang S, Macromolecules, 39(26), 9035 (2006)
  14. Mylvaganam K, Zhang LC, J. Phys. Chem. B, 108(39), 15009 (2004)
  15. Velasco-Santos C, Martinez-Hernandez AL, Castano VM, Compos. Interfaces, 11(8-9), 567 (2005)
  16. Moniruzzaman M, Winey KI, Macromolecules, 39(16), 5194 (2006)
  17. Bahr JP, Mickelson ET, Bronikowski MJ, Smalley RE, Tour JM, Chem. Commun., 193 (2001)
  18. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG, Nano Letters, 3, 269 (2003)
  19. Yu MF, Files BS, Arepalli S, Ruoff RS, Phys. Rev. Lett., 84, 5552 (2000)
  20. You YZ, Hong CY, Pan CY, Macromol. Rapid Commun., 27(23), 2001 (2006)
  21. Haggenmueller R, Du FM, Fischer JE, Winey KI, Polymer, 47(7), 2381 (2006)
  22. Chang TE, Kisliuk A, Rhodes SM, Brittain WJ, Sokolov AP, Polymer, 47(22), 7740 (2006)
  23. Barros EB, Souza Filho AG, Lemos V, Mendes Filho J, Fagan SB, Herbst MH, Rosolen JM, Luengo CA, Huber JG, Carbon, 43, 2495 (2005)
  24. Strong KL, Anderson DP, Lafdi K, Kuhn JN, Carbon, 41, 1477 (2003)
  25. Ding HY, Tian Y, Wang LH, Liu BQ, J. Appl. Polym. Sci., 105(6), 3355 (2007)
  26. Chen Q, Xi Y, Bin Y, Matsuo M, J. Polym. Sci. Part B: Polym. Phys., 46, 359 (2008)
  27. Fang L, Leng Y, Gao P, Biomaterials, 26, 3471 (2005)
  28. Khonakdar HA, Jafari SH, Hassler R, J. Appl. Polym. Sci., 104(3), 1654 (2007)
  29. Ramanathan T, Liu H, Brinson LC, J. Polym. Sci. B: Polym. Phys., 43(17), 2269 (2005)
  30. Kim JY, Kim SH, J. Polym. Sci. B: Polym. Phys., 44(7), 1062 (2006)
  31. Coleman JN, Khan U, Gun'ko YK, Adv. Mater., 18(6), 689 (2006)
  32. Rasheed A, Chae HG, Kumar S, Dadmun MD, Polymer, 47(13), 4734 (2006)
  33. Chen XM, Yoon KW, Burger C, Sics I, Fang DF, Hsiao BS, Chu B, Macromolecules, 38(9), 3883 (2005)
  34. Xue YQ, Tervoort TA, Lemstra PJ, Macromolecules, 31(9), 3075 (1998)
  35. Jarus D, Hiltner A, Baer E, Polymer, 43(8), 2401 (2002)
  36. Joly C, Smaihi M, Porcarm L, Noble RD, Chem. Mater., 11, 2331 (1999)
  37. Ebeling T, Norek S, Hasan A, Hiltner A, Baer E, J. Appl. Polym. Sci., 71(9), 1461 (1999)
  38. Weinkauf DH, Paul DR, in Effect of Structural Order on Barrier Properties, Koros WJ, Americal Chemical Society, Washington, DC (1990)
  39. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH, Polymer, 44(19), 5893 (2003)
  40. Hu GJ, Zhao CG, Zhang SM, Yang MS, Wang ZG, Polymer, 47(1), 480 (2006)
  41. Nogales A, Broza G, Roslaniec Z, Schulte K, Sics I, Hsiao BS, Sanz A, Garcia-Gutierrez MC, Rueda DR, Domingo C, Ezquerra TA, Macromolecules, 37(20), 7669 (2004)
  42. Bin YZ, Kitanaka M, Zhu D, Matsuo M, Macromolecules, 36(16), 6213 (2003)
  43. Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L, Appl. Phys. A-Mater., 69, 255 (1999)