Macromolecular Research, Vol.17, No.3, 156-162, March, 2009
Supramolecular Hydrogels Instantaneously Formed by Inclusion Complexation between Amphiphilic Oligomers and α-Cyclodextrins
E-mail:
Supramolecular hydrogels were instantaneously fabricated by mixing aqueous solutions of α-cyclodextrins (α-CDs) and amphiphilic methoxy (polyethylene glycol) (MPEG)-ε-caprolactone (CL) oligomer, which was synthesized via the ring-opening polymerization of the CL monomer using low-molecular-weight MPEG (Mn of MPEG=2,000 g/mol) as an initiator. The supramolecular structure of the hydrogels was revealed by X-ray diffraction (XRD) analyses. Rheological studies of the hydrogels revealed an elastic character when the number of CL units
in the oligomer was more than 2, and the obtained hydrogels showed high storage modulus but relatively low shearing viscosity due to the low-molecular-weight character of the oligomer, which was more preferable for use as an injectable delivery system. The physical properties of the hydrogels could be modulated by controlling the chain morphology and concentration of the oligomers, as well as the feed molar ratio of the oligomer to α-CD. The components of the supramolecular hydrogels are biocompatible and can readily be eliminated from the body. These features render the supramolecular hydrogels suitable as drug delivery systems and tissue engineering scaffolds.
- Hoffman AS, Adv. Drug Deliv. Rev., 43, 3 (2002)
- Lee KY, Mooney DJ, Chem. Rev., 101(7), 1869 (2001)
- Jeong B, Choi YK, Bae YH, Zentner G, Kim SW, J. Control. Release, 62, 109 (1999)
- Jeong B, Bae YH, Kim SW, J. Control. Release, 63, 155 (2000)
- Jeong B, Bae YH, Lee DS, Kim SW, Nature, 388(6645), 860 (1997)
- Behr JP, The lock-and-Key Principle, John Wiley and Son, Chichester, U. K. (1994)
- Szejtli J, Cycledextrins and Their Inclusion Complexes, Akademiai Kiado, Budapest (1982)
- Nepogodiev SA, Stoddart JF, Chem. Rev., 98(5), 1959 (1998)
- Harada A, Li J, Kamachi M, Nature, 356, 325 (1992)
- Panova IG, Topchieva IN, Russ. Chem. Rev., 70, 23 (2001)
- Szejtli J, Chem. Rev., 98(5), 1743 (1998)
- Mosher GL, Thompson DO, in Encyclopedia of Pharmaceutical Technology, 2nd Edition, Swarbrick J, Ed., Marcel Dekker (2002)
- Nelson A, Belitsky JM, Vidal S, Joiner CS, Baum LG, Stoddart JF, J. Am. Chem. Soc., 126(38), 11914 (2004)
- Li J, Yang C, Li HZ, Wang X, Goh SH, Ding JL, Wang DY, Leong KW, Adv. Mater., 18(22), 2969 (2006)
- Tokuhisa K, Hamada E, Karinaga R, Shimada N, Takeda Y, Kawasaki S, Sakurai K, Macromolecules, 39(26), 9480 (2006)
- Li J, Harada A, Kamachi M, Polym. J., 26, 1019 (1994)
- Li J, Li X, Zhou ZH, Ni XP, Leong KW, Macromolecules, 34(21), 7236 (2001)
- Huh KM, Ooya T, Lee WK, Sasaki S, Kwon IC, Jeong SY, Yui N, Macromolecules, 34(25), 8657 (2001)
- Huk KM, Cho YW, Yui N, Macromol. Biosci., 4, 92 (2004)
- Choi HS, Kontani K, Huh KM, Sasaki S, Macromol. Biosci., 2, 298 (2002)
- Zhao SP, Zhang LM, Ma D, J. Phys. Chem. B, 110(25), 12225 (2006)
- Li J, Li X, Ni X, Wang X, Biomaterials, 27, 4132 (2006)
- Choi YR, Bae YH, Kim SW, Macromolecules, 31(25), 8766 (1998)
- Fruijtier-Polloth C, Toxicology, 214, 1 (2005)
- Harada A, Li J, Kamachi M, Macromolecules, 26, 5698 (1993)
- Xie WH, Zhu WP, Shen ZQ, Polymer, 48(23), 6791 (2007)
- Kalyanasundaram K, Thomas JK, J. Am. Chem. Soc., 99, 2039 (1977)
- Wilhelm M, Zhao C, Wang Y, Xu R, Macromolecules, 24, 1033 (1991)
- Jeong B, Bae YH, Kim SW, Colloid Surf. B, 16, 185 (1999)
- Harada A, Kamachi M, Macromolecules, 23, 2821 (1990)
- Kawaguchi Y, Nishiyama T, Okada M, Kamachi M, Harada A, Macromolecules, 33(12), 4472 (2000)
- Huang L, Allen E, Tonelli AE, Polymer, 39(20), 4857 (1998)
- Harada A, Okada M, Li J, Kamachi M, Macromolecules, 28(24), 8406 (1995)
- Lu J, Shin ID, Nojima S, Tonelli AE, Polymer, 41(15), 5871 (2000)
- Rusa CC, Fox J, Tonelli AE, Macromolecules, 36(8), 2742 (2003)
- Chen YF, Zhang FB, Xie XM, Yuan JY, Polymer, 48(9), 2755 (2007)
- Jada A, Hurtrez G, Siffert B, Riess G, Macromol. Chem. Phys., 197, 3697 (1996)
- Winter HH, Chambon F, Polym. Bull. (Berlin), 13, 297 (1985)