화학공학소재연구정보센터
Polymer(Korea), Vol.32, No.6, 587-592, November, 2008
전자빔 조사를 이용한 고분자량 혼성배열 폴리(비닐 알코올) 수화젤의 제조
Preparation of High Molecular Weight Atactic Poly(vinyl alcohol) Hydrogel by Electron Beam Irradiation Technique
E-mail:
초록
고분자량 폴리(비닐 알코올)(poly(vinyl alcohol), PVA)에 전자빔(electron beam, EB)을 조사하여 상처치료용 드레싱으로 응용이 기대되는 수화젤을 성공적으로 제조하였다. 다양한 겔화율, 물에서의 팽윤도, 겔강도, 및 신도를 가지는 수화젤을 제조하기 위해 수평균 중합도(Pn)가 1700과 4000인 두 종류의 PVA를 이용하였으며, PVA 수용액 농도와 EB 조사선량은 5∼20%와 30∼100 kGy의 범위로 각각 조절되었다. 제조된 PVA 수화젤의 겔화율과 겔강도는 PVA의 분자량과 수용액의 농도 및 EB 조사선량이 증가함에 따라 증가하였으나, 반면에, PVA 수화젤의 팽윤도와 신도는 감소하였다. PVA 수화젤의 가교밀도에 따른 열적특성과 결정성의 변화는 differential scanning calorimetry와 X-ray diffraction을 이용하여 분석되었다.
High molecular weight poly(vinyl alcohol) (PVA) hydrogel to be expected as a candidate material for the wound-dressing was successfully prepared by electron beam (EB) irradiation. To produce PVA hydrogels with various gel fractions, degrees of swelling in water, gel strengths, and elongations, two different number-average degrees of polymerization [(Pn)s] of PVA were adapted such as 1700 and 4000, and the PVA solution concentration and irradiation dose of EB were controlled to range of 5∼20% and 30∼100 kGy, respectively. The gel fraction and strength of PVA hydrogel were increased with increasing molecular weight of PVA, solution concentration, and irradiation dose of EB. On the contrary, the degree of swelling and elongation of PVA hydrogel were decreased. The thermal property and crystallinity related to degree of crosslinking of PVA hydrogel were examined by the analyses of differential scanning calorimetry and X-ray diffraction.
  1. Kim SJ, Lee KJ, Kim SI, Lee KB, Park YD, J. Appl. Polym. Sci., 90(1), 86 (2003)
  2. Lim F, Sun AM, Science, 210, 908 (1980)
  3. Rosiak JM, J. Control. Release, 31, 9 (1994)
  4. Toyoshima K, Poly(vinyl alcohol), Finch CA, Editor, John Wiley and Sons, New York, p 339-388 (1973)
  5. Sakurada I, Poly(vinyl alcohol) Fibers, Lewin M, Editor, Marcel Dekker, New York, p. 3-9 and p. 361-386 (1985)
  6. Masuda M, Poly(vinyl alcohol)-Development, Finch CA, Editor, John Wiley and Sons, New York, p. 403-422 and p. 711 (1991)
  7. Lugao AB, Malmonge SM, Nuclear Instruments and Methods in Physics Research B, 185, 37 (2001)
  8. Sen M, Avci EN, J. Biomed. Mater. Res., 74, 187 (2005)
  9. Rosiak JM, Yoshii F, Nuclear Instruments and Methods in Physics Research B, 151, 56 (1999)
  10. Yoshii F, Makuuchi K, Darwis D, Iriawan T, Razzak MT, Rosiak JM, Radiat. Phys. Chem., 46, 169 (1995)
  11. Yoshii F, Zhanshan Y, Isobe K, Shinozaki K, Makuuchi K, Radiat. Phys. Chem., 55, 133 (1999)
  12. Lyoo WS, Lee SG, Kim JP, Han SS, Lee CJ, Colloid Polym. Sci., 276, 951 (1998)
  13. Lyoo WS, Lee HW, Colloid Polym. Sci., 280, 835 (2002)
  14. Zhao DC, Liao GZ, Gao G, Liu FQ, Macromolecules, 39(3), 1160 (2006)
  15. Lim HJ, Lee SJ, Choi HG, Kim JA, Yong CS, Han SS, Noh SK, Jang J, Lyoo WS, J. Appl. Polym. Sci., 106(5), 3268 (2007)
  16. Lyoo WS, Kwak YJ, Ha WS, J. Kor. Fib. Soc., 33, 321 (1996)
  17. Kim SG, Lee WS, Jo SM, Kim BC, Lyoo WS, Han JR, J. Kor. Fib. Soc., 36, 354 (1999)
  18. Christie M, Peppas H, Peppas NA, Macromolecules, 32, 2472 (2000)
  19. Ajji Z, Othman I, Rosiak JM, Nuclear Instruments and Methods in Physics Research B, 299, 375 (2005)
  20. Atta AM, Elsayed AM, Shafy HI, J. Appl. Polym. Sci., 108, 1706 (2008)
  21. Ricciardi R, Auriemma F, De Rosa C, Laupretre F, Macromolecules, 37(5), 1921 (2004)