Journal of Physical Chemistry A, Vol.111, No.30, 7081-7089, 2007
Raman spectroscopic study on the solvation of N,N-Dimethyl-p-nitroaniline in room-temperature ionic liquids
Electronic absorption spectra and Raman spectra of N,N-dimethyl-p-nitroaniline (DMPNA) have been measured in various fluids from the gaseous-like conditions in supercritical fluids (SCFs) to highly polar room-temperature ionic liquids (RTILs). We found that the S-0-S-1 absorption band center of DMPNA in RTILs is mostly determined by the molar concentrations of ions. On the other hand, the bandwidth of the absorption spectrum does not follow the expectation from a simple dielectric continuum model. Especially in SCFs, the bandwidth of the absorption spectrum decreases with increasing solvent density, suggesting that the intramolecular reorganization energy is a decreasing function of the solvent density. The Raman shift of the NO2 stretching mode has been proven to be a good indicator of the solvent polarity; i.e., the vibrational frequency of the NO2 stretching mode changes from 1340 cm(-1) in mostly nonpolar solvent such as ethane to 1300 cm(-1) in water. The linear relationship between the absorption band center and the vibrational frequency of the NO2 mode, which was observed for conventional liquids in a previous paper (Fujisawa, T.; Terazima, M.; Kimura, Y. J. Chem. Phys. 2006, 124, 184503), holds almost well for all fluids including SCFs and RTILs. On the other hand, the vibrational bandwidth does not show a simple relationship with the absorption band center. The vibrational bandwidths in RTILs are generally larger in comparison with those in conventional liquids with similar polarity scales. Among the RTILs we investigated, the vibrational bandwidth loosely correlates with the molecular size of the anion. A similar dependence on the anion size is also observed for the bandwidth of the absorption spectrum. We have also investigated the excitation wavelength dependence of the Raman shift of the NO2 stretching mode in RTILs. The extent of the dependence on the excitation wavelength in all fluids is well correlated with the vibrational bandwidth.