Journal of Physical Chemistry A, Vol.111, No.30, 7073-7080, 2007
A microwave and quantum chemical study of the conformational properties of etheneselenocyanate (H2C=CHSeC N)
The structural and conformational properties of etheneselenocyanate (H2CCHSeCN) have been explored by microwave spectroscopy and quantum chemical calculations performed at the MP2/aug-cc-pVTZ and B3LYP/aug-cc-pVTZ levels of theory. The spectra of two rotameric forms were assigned. The more stable form has a synperiplanar conformation, whereas the less stable form has an anticlinal conformation characterized by a C-C-Se-C dihedral angle of 163(3)degrees from the synperiplanar position (0 degrees). The synperiplanar form was found to be 4.5(4) kJ/mol more stable than the anticlinal form by relative intensity measurements performed on microwave transitions. The spectra of several isotopologues and two vibrationally excited states were assigned for the synperiplanar conformer. The anticlinal rotamer displays a complicated pattern of low-frequency vibrational states, which is assumed to reflect the existence of a small potential hump at the antiperiplanar (180 degrees) conformation. The predictions made in the MP2 and B3LYP calculations are in reasonably good agreement with the experimental results in some cases, whereas rather large differences are seen for other molecular properties.