Korean Journal of Chemical Engineering, Vol.24, No.6, 1084-1088, November, 2007
Growth of ZnO nanoneedles on silicon substrate by cyclic feeding chemical vapor deposition: Structural and optical properties
E-mail:
Well-crystallized ZnO nanoneedles were grown on Au-coated Si(100) substrate by cyclic feeding chemical vapor deposition (CFCVD) process using diethyl zinc and oxygen as precursors for zinc and oxygen, respectively. Morphological investigations revealed that the as-grown nanoneedles exhibited sharpened tips and wider bases, having the typical diameters at their bases and tips, 60±10 nm and 20±10 nm, respectively. Detailed structural characterizations confirmed that the as-grown products were single crystalline with a wurtzite hexagonal phase and were grown preferentially along the [0001] direction. The room-temperature photoluminescence (PL) spectrum showed a strong and sharp UV emission at 378 nm with a very weak, suppressed and broad green emission at 520 nm, substantiating good optical properties for the as-grown ZnO nanoneedles.
- Iijima S, Nature, 354, 56 (1991)
- Morales AM, Lieber CM, Science, 279(5348), 208 (1998)
- Zhang XT, Liu Z, Leng YP, Li Q, Hark SK, Appl. Phys. Lett., 83, 5533 (2003)
- Umar A, Ra HW, Jeong JP, Suh EK, Hahn YB, Korean J. Chem. Eng., 23(3), 499 (2006)
- Sekar A, Kim SH, Umar A, Hahn YB, J. Cryst. Growth, 277(1-4), 471 (2005)
- Umar A, Lee S, Lee YS, Nahm KS, Hahn YB, J. Cryst. Growth, 277(1-4), 479 (2005)
- Umar A, Kim SH, Lee YS, Nahm KS, Hahn YB, J. Cryst. Growth, 282(1-2), 131 (2005)
- Umar A, Karunagaran B, Suh EK, Hahn YB, Nanotechnology, 17, 4072 (2006)
- Lee S, Im YH, Hahn YB, Korean J. Chem. Eng., 22(2), 334 (2005)
- Klingshirn C, Phys. Status Solidi B, 71, 547 (1975)
- Minne SC, Manalis SR, Quate CF, Appl. Phys. Lett., 67, 3918 (1995)
- Zhang BP, Binh NT, Wakatsuki K, Segawa Y, Yamada Y, Usami N, Koinuma H, Appl. Phys. Lett., 84, 4098 (2004)
- Hughes WL, Wang ZL, Appl. Phys. Lett., 82, 2886 (2003)
- Hughes WL, Wang ZL, J. Am. Chem. Soc., 126(21), 6703 (2004)
- Gao PX, Wang ZL, J. Appl. Phys., 97, 044304 (2005)
- Kong XY, Wang ZL, Appl. Phys. Lett., 84, 975 (2004)
- Umar A, Lee S, Im YH, Hahn YB, Nanotechnology, 16, 2462 (2005)
- Umar A, Hahn YB, Nanotechnology, 17, 2174 (2006)
- Umar A, Hahn YB, Appl. Phys. Lett., 88, 173120 (2006)
- Yang JL, An SJ, Park WI, Yi GC, Choi W, Adv. Mater., 16, 1661 (2004)
- Park WI, Yi GC, Kim MY, Pennycook SJ, Adv. Mater., 14(24), 1841 (2002)
- Li YB, Bando Y, Golberg D, Appl. Phys. Lett., 84, 3603 (2004)
- Zhang HZ, Wang RM, Zhu YW, J. Appl. Phys., 96, 624 (2004)
- Zhang J, Yang Y, Jiang F, Li J, Physica E, 27, 302 (2005)
- Deheer WA, Chatelain A, Ugarte D, Science, 270(5239), 1179 (1995)
- Gerthsen D, Litvinov D, Gruber T, Kirchner C, Waag A, Appl. Phys. Lett., 81, 3972 (2002)
- Vanheusden K, Seager CH, Warren WL, Tallant DR, Voigt JA, J. Appl. Phys., 79, 7983 (1996)
- Bagnall DM, Chen YF, Shen MY, Zhu Z, Goto T, Yao T, J. Cryst. Growth, 185, 605 (1998)
- Wagner RS, Ellis WC, Appl. Phys. Lett., 4, 89 (1964)
- Duan XF, Lieber CM, J. Am. Chem. Soc., 122(1), 188 (2000)
- Gao PX, Wang ZL, J. Phys. Chem. B, 108(23), 7534 (2004)
- Zhao DX, Andreazza C, Andreazza P, Ma JG, Liu YC, Shen DZ, Chem. Phys. Lett., 399(4-6), 522 (2004)