화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.24, No.6, 1084-1088, November, 2007
Growth of ZnO nanoneedles on silicon substrate by cyclic feeding chemical vapor deposition: Structural and optical properties
E-mail:
Well-crystallized ZnO nanoneedles were grown on Au-coated Si(100) substrate by cyclic feeding chemical vapor deposition (CFCVD) process using diethyl zinc and oxygen as precursors for zinc and oxygen, respectively. Morphological investigations revealed that the as-grown nanoneedles exhibited sharpened tips and wider bases, having the typical diameters at their bases and tips, 60±10 nm and 20±10 nm, respectively. Detailed structural characterizations confirmed that the as-grown products were single crystalline with a wurtzite hexagonal phase and were grown preferentially along the [0001] direction. The room-temperature photoluminescence (PL) spectrum showed a strong and sharp UV emission at 378 nm with a very weak, suppressed and broad green emission at 520 nm, substantiating good optical properties for the as-grown ZnO nanoneedles.
  1. Iijima S, Nature, 354, 56 (1991)
  2. Morales AM, Lieber CM, Science, 279(5348), 208 (1998)
  3. Zhang XT, Liu Z, Leng YP, Li Q, Hark SK, Appl. Phys. Lett., 83, 5533 (2003)
  4. Umar A, Ra HW, Jeong JP, Suh EK, Hahn YB, Korean J. Chem. Eng., 23(3), 499 (2006)
  5. Sekar A, Kim SH, Umar A, Hahn YB, J. Cryst. Growth, 277(1-4), 471 (2005)
  6. Umar A, Lee S, Lee YS, Nahm KS, Hahn YB, J. Cryst. Growth, 277(1-4), 479 (2005)
  7. Umar A, Kim SH, Lee YS, Nahm KS, Hahn YB, J. Cryst. Growth, 282(1-2), 131 (2005)
  8. Umar A, Karunagaran B, Suh EK, Hahn YB, Nanotechnology, 17, 4072 (2006)
  9. Lee S, Im YH, Hahn YB, Korean J. Chem. Eng., 22(2), 334 (2005)
  10. Klingshirn C, Phys. Status Solidi B, 71, 547 (1975)
  11. Minne SC, Manalis SR, Quate CF, Appl. Phys. Lett., 67, 3918 (1995)
  12. Zhang BP, Binh NT, Wakatsuki K, Segawa Y, Yamada Y, Usami N, Koinuma H, Appl. Phys. Lett., 84, 4098 (2004)
  13. Hughes WL, Wang ZL, Appl. Phys. Lett., 82, 2886 (2003)
  14. Hughes WL, Wang ZL, J. Am. Chem. Soc., 126(21), 6703 (2004)
  15. Gao PX, Wang ZL, J. Appl. Phys., 97, 044304 (2005)
  16. Kong XY, Wang ZL, Appl. Phys. Lett., 84, 975 (2004)
  17. Umar A, Lee S, Im YH, Hahn YB, Nanotechnology, 16, 2462 (2005)
  18. Umar A, Hahn YB, Nanotechnology, 17, 2174 (2006)
  19. Umar A, Hahn YB, Appl. Phys. Lett., 88, 173120 (2006)
  20. Yang JL, An SJ, Park WI, Yi GC, Choi W, Adv. Mater., 16, 1661 (2004)
  21. Park WI, Yi GC, Kim MY, Pennycook SJ, Adv. Mater., 14(24), 1841 (2002)
  22. Li YB, Bando Y, Golberg D, Appl. Phys. Lett., 84, 3603 (2004)
  23. Zhang HZ, Wang RM, Zhu YW, J. Appl. Phys., 96, 624 (2004)
  24. Zhang J, Yang Y, Jiang F, Li J, Physica E, 27, 302 (2005)
  25. Deheer WA, Chatelain A, Ugarte D, Science, 270(5239), 1179 (1995)
  26. Gerthsen D, Litvinov D, Gruber T, Kirchner C, Waag A, Appl. Phys. Lett., 81, 3972 (2002)
  27. Vanheusden K, Seager CH, Warren WL, Tallant DR, Voigt JA, J. Appl. Phys., 79, 7983 (1996)
  28. Bagnall DM, Chen YF, Shen MY, Zhu Z, Goto T, Yao T, J. Cryst. Growth, 185, 605 (1998)
  29. Wagner RS, Ellis WC, Appl. Phys. Lett., 4, 89 (1964)
  30. Duan XF, Lieber CM, J. Am. Chem. Soc., 122(1), 188 (2000)
  31. Gao PX, Wang ZL, J. Phys. Chem. B, 108(23), 7534 (2004)
  32. Zhao DX, Andreazza C, Andreazza P, Ma JG, Liu YC, Shen DZ, Chem. Phys. Lett., 399(4-6), 522 (2004)