화학공학소재연구정보센터
Polymer(Korea), Vol.15, No.2, 154-161, April, 1991
Benzoin Methyl Ether 측쇄를 가진 고분자 광개시제의 광분해 반응
Photodecomposition of Polymeric Photoinitiator Containing Benzoin Methyl Ether Side Group
초록
α-methylolbenzoin methyl ether methacrylate와 methyl methacrylate를 공중합시켜 합성한 고분자 광개시제의 광분해반응을 관찰한 결과 용액상태에서와 고체상태에서의 광분해반응이 서로 달랐다. 용액상태에서의 광분해반응은 고체상태보다 매우 효과적으로 일어났으며 분자량이 감소된 것으로 보아 고분자 주사슬의 분해가 일어남을 알 수 있었다. 용액상태에서 광분해한 후 얻어진 생성물은 단일중합체의 경우 benzaldehyde, α-methoxystyrene 등이 발견되었고 공중합체의 경우에는 MMA가 확인되었다. 고체상태에서 공중합체를 광분해한 결과 분자량분포에는 별다른 변화가 없었으나 산소 존재하에서는 광산화반응이 효과적으로 일어났다. 이러한 결과를 고분자 광개시제의 광분해반응 메카니즘으로 설명하였다.
The homopolymer and copolymer of α-methylolbenzoin methyl ether methacrylate with MMA were synthesized and photolysis of these polymeric photoinitiators were studied in solid or in solution state. The photolysis in solution was more efficient than that in solid state and molecular weights were decreased due to main chain scission. Photolysis products of the homopolymer is solution state were found to be benzaldehyde and α-methoxystyrene, while MMA was found in case of the copolymer with MMA. Molecular weight distribution was not appreciably changed in the solid state photolysis of the copolymer, but it photooxidized efficiently under oxygen. These results were explained by the photodecomposition mechanism of those polymeric photoinitiators.
  1. McGinnis V, Photogr. Sci. Eng., 23, 124 (1979)
  2. Delzenne GA, J. Radiation Curing, 2 (1979)
  3. Hageman HJ, Overeen T, Makromol. Chem. Rapid Commun., 2, 719 (1981) 
  4. Adam S, Gusten H, Steeken S, Frohlinde DS, Liebigs Ann. Chem., 1831 (1974)
  5. Schnabel W, Photog. Sci. Eng., 23, 155 (1979)
  6. Maruyama K, Furut H, Otsuki T, Bull. Chem. Soc. Jpn., 53, 2421 (1980) 
  7. Kurusu Y, Nishiyama H, Okawara M, J. Chem. Soc. Jpn. Ind. Chem. Sect., 70, 593 (1967)
  8. Shim JS, Park NG, Kim UY, Ahn KD, Polym.(Korea), 8(1), 34 (1984)
  9. Ahn KD, Ihn KJ, Kwon IC, J. Macromol. Sci.-Chem., 23, 355 (1986)