Applied Surface Science, Vol.187, No.1-2, 51-59, 2002
The growth of ultrathin Al2O3 films on Cu(111)
The growth of ultrathin films of Al2O3 on Cu(111) in the temperature range 300-1200 K was investigated by using Auger electron spectroscopy (AES), low-energy electron diffraction (LEED) and high-resolution electron energy loss spectroscopy (HREELS). Eight monolayers of a mixture of nickel and aluminum (Ni:Al = 1:2) were deposited on Cu(l 1 1) at 300 K by simultaneous evaporation of both Ni and Al from NiAl crystal material. The bimetal layer was oxidized at 300 K until saturation and annealed gradually to 1200 K. During oxygen adsorption, only aluminum is oxidized. Annealing of the oxidized layer to 1200 K leads to the formation of a well-ordered aluminum oxide. The HREEL spectra show the characteristic Fuchs-Kliever phonons of Al2O3 (410, 620 and 885 cm(-1)). During annealing, Ni diffuses into the Cu(I 1 1) substrate. The LEED pattern of the ultrathin oxide layer has a hexagonal structure with a lattice constant of 3.1 Angstrom, which corresponds to the distance between two oxygen ions in the aluminum oxide. (C) 2002 Elsevier Science B.V. All rights reserved.
Keywords:aluminum oxide;Auger electron spectroscopy;low-energy electron diffraction;high-resolution electron energy loss spectroscopy;copper;surface structure;oxidation