화학공학소재연구정보센터
Automatica, Vol.42, No.5, 797-803, 2006
Input to state stability of min-max MPC controllers for nonlinear systems with bounded uncertainties
Min-max model predictive control (MPC) is one of the control techniques capable of robustly stabilize uncertain nonlinear systems subject to constraints. In this paper we extend existing results on robust stability of min-max MPC to the case of systems with uncertainties which depend on the state and the input and not necessarily decaying, i.e. state and input dependent bounded uncertainties. This allows us to consider both plant uncertainties and external disturbances in a less conservative way. It is shown that the input-to-state practical stability (ISpS) notion is suitable to analyze the stability of worst-case based controllers. Thus, we provide Lyapunov-like sufficient conditions for ISpS. Based on this, it is proved that if the terminal cost is an lSpS-Lyapunov function then the optimal cost is also an ISpS-Lyapunov function for the system controlled by the min-max MPC and hence, the controlled system is ISpS. Moreover, we show that if the system controlled by the terminal control law locally admits certain stability margin, then the system controlled by the min-max MPC retains the stability margin in the feasibility region. (c) 2006 Elsevier Ltd. All rights reserved.