Automatica, Vol.42, No.5, 789-795, 2006
Application of polynomial chaos in stability and control
The polynomial chaos of Wiener provides a framework for the statistical analysis of dynamical systems, with computational cost far superior to Monte Carlo simulations. It is a useful tool for control systems analysis because it allows probabilistic description of the effects of uncertainty, especially in systems having nonlinearities and where other techniques, such as Lyapunov's method, may fail. We show that stability of a system can be inferred from the evolution of modal amplitudes, covering nearly the full support of the uncertain parameters with a finite series. By casting uncertain parameters as unknown gains, we show that the separation of stochastic from deterministic elements in the response points to fast iterative design methods for nonlinear control. (c) 2006 Elsevier Ltd. All rights reserved.
Keywords:polynomial chaos;control applications