Journal of Physical Chemistry B, Vol.109, No.39, 18460-18464, 2005
Raman studies on the interaction of the reactants with the platinum nanoparticle surface during the nanocatalyzed electron transfer reaction
Raman studies are conducted to understand the specific interactions between the individual reactants and the platinum nanoparticle surface during the nanocatalyzed electron transfer reaction between hexacyanoferrate (III) ions and thiosulfate ions. When Pt nanoparticles are added to the thiosulfate ion solution, a shift in the symmetric SS stretching mode is observed compared to the frequency observed for the free thiosulfate ions in solution, suggesting that binding to the Pt nanoparticle surface occurs via the S- ion. It is also observed that there are no shifts in the symmetric and asymmetric OSO bending or SO stretching frequencies. This suggests that the thiosulfate ions do not bind to the nanoparticle surface via the O- ion. When platinum nanoparticles are added to the hexacyanoferrate(III) ion solution, evidence is found for both adsorbed hexacyanoferrate(III) ions and a platinum cyanide complex. For adsorbed hexacyanoferrate(III) ions, the CN stretching frequency is observed at 2101 cm(-1) and the Fe-C stretching frequency is found at 368 cm(-1). The observed CN stretching frequencies located at 2147 and 2167 cm(-1) provide strong evidence that there is a Pt(CN)(2-)(4) platinum cyanide complex formed. In addition, the Pt-C equivalent to N band is also observed at 2054 cm(-1). These observed bands provide spectroscopic evidence that the hexacyanoferrate(III) ions dissolve by forming a complex with the surface platinum atoms of the nanoparticles. Raman spectra of the product mixtures are obtained after the completion of the reaction when carried out with higher reactant concentrations to observe the Raman spectra, but with a similar 10:1 ratio of thiosulfate to hexacyanoferrate(III) ions as used previously, with and without PVP-Pt nanoparticles at a correspondingly higher concentration. It is observed that there are no shifts in the characteristic Raman bands associated with hexacyanoferrate(II) ions and no evidence for the formation of adsorbed hexacyanoferrate(II) species or platinum cyanide complexes in the presence of the platinum nanoparticles. In addition, there is evidence for the shifted symmetric SS stretching mode, suggesting that some of the unreacted thiosulfate (present in large excess) is bound to the Pt nanoparticle surface. Thus, under the actual reaction conditions, the hexacyanoferrate(III) ions preferentially react with adsorbed thiosulfate ions to form the reaction products, and this supports the surface catalytic mechanism we proposed previously.