화학공학소재연구정보센터
Polymer(Korea), Vol.29, No.3, 314-319, May, 2005
새로운 지방족 디올/디카복실산계 생분해성 폴리에스테르 및 가수분해 특성
New Aliphatic Diol/Dicarboxylic Acid Based Biodegradable Polyesters and Their in-vitro Degradations
E-mail:
초록
촉매인 stannous octoate 존재 하에서 글리콜리드를 이관능성 개시제인 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol과 반응시켜 4가지 종류의 새로운 지방족 디올을 합성하였다. 이들 새로운 디올과 succinic acid, adipic acid, 혹은 suberic acid와 titanium(IV) isopropoxide 촉매하에서 170, 190, 또는 220 ℃에서 축합중합시켜 분자구조가 규칙적으로 배열된 새로운 지방족 폴리에스테르와 무질서한 구조를 갖는 폴리에스테르를 각각 얻었다. 이들 지방족 폴리에스테르들의 유리전이온도(Tg)는 -40에서 30 ℃ 사이였다. 또한 170 ℃에서 제조된 분자구조가 규칙적으로 배열된 폴리에스테르가 높은 온도에서 합성된 구조가 무질서한 폴리에스테르들보다 Tg가 5-10 ℃ 정도 높았다. 체외분해 실험 결과, 분자구조가 규칙적으로 배열된 폴리에스테르가 불규칙한 중합체보다 완충용액 속에서 가수분해속도가 느렸다.
Four kinds of new aliphatic diols were synthesized by the ring opening reaction of glycolide with 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanediol, or 1,4-cyclohexanedimethanol, a difunctional initiator, in the presence of stannous octoate catalyst. The resulting diols were melt-polymerized with succinic acid, adipic acid, or suberic acid at 170, 190, or 220 ℃ to produce new sequentially ordered aliphatic polyesters and their corresponding polyesters with random structure. Their glass transition temperatures (Tg) ranged from -40 to 30 ℃. The sequentially ordered polyesters prepared at 170 ℃ had higher Tg of 5 to 10 ℃ than the polyesters with random structure produced at higher temperature. From in-vitro degradation test, the sequentially ordered polyesters was slower in the rate of hydrolysis in a buffer solution than the polymers with random molecular structure.
  1. Vert M, Mauduit J, Biomaterials, 15, 1209 (1994) 
  2. Singhal JP, Singh H, Ray AR, Rev. Macromol. Chem. Phys., C28, 475 (1988)
  3. Satyanarayana D, Chatterji PR, Rev. Macromol. Chem. Phys., C33, 349 (1993)
  4. Bhardwaj R, Blanchard J, J. Pharm., 170, 109 (1998)
  5. Winet H, Bao JY, J. Biomed. Mater. Res., 40, 567 (1998) 
  6. Wise DL, Fellmann TS, Sanderson JE, Wentworth RL, Drug Carriers in Biology and Medicine, Academic Press, New York, p 237 (1979)
  7. Lee SH, Kim SH, Han YK, Kim YH, J. Polym. Sci. A: Polym. Chem., 40(15), 2545 (2002) 
  8. Bendix D, Polym. Degrad. Stabil., 59, 129 (1998) 
  9. Kricheldorf HR, Mang T, Jonte JM, Macromolecules, 17, 2173 (1984) 
  10. Mainil-Varlet P, Curtius R, Gogolewski S, J. Biomed. Mater. Res., 36, 360 (1997) 
  11. Kim SH, Han YK, Kim HY, Ahn KD, Chang T, Makromol. Chem., 194, 3229 (1993) 
  12. Zhu KJ, Bihai S, Shilin Y, J. Polym. Sci. A: Polym. Chem., 27, 2151 (1989) 
  13. Okada M, Okada Y, Tao A, Aoi K, J. Appl. Polym. Sci., 62(13), 2257 (1996) 
  14. Okada M, Tachikawa K, Aoi K, J. Polym. Sci. A: Polym. Chem., 35(13), 2729 (1997) 
  15. Lee SH, Han YK, Kim ER, Im SS, Polym.(Korea), 21(6), 926 (1997)
  16. Tomita K, Ida H, Polymer, 14, 55 (1973) 
  17. Na SK, Kong BG, Choi C, Kim JG, Hong WH, Nah JW, Polym.(Korea), 29(1), 41 (2005)
  18. Hoffman KR, Casey DJ, J. Polym. Sci. A: Polym. Chem., 23, 1939 (1985)
  19. Shih C, J. Control. Release, 834, 9 (1995)