- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.29, No.3, 314-319, May, 2005
새로운 지방족 디올/디카복실산계 생분해성 폴리에스테르 및 가수분해 특성
New Aliphatic Diol/Dicarboxylic Acid Based Biodegradable Polyesters and Their in-vitro Degradations
E-mail:
초록
촉매인 stannous octoate 존재 하에서 글리콜리드를 이관능성 개시제인 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol과 반응시켜 4가지 종류의 새로운 지방족 디올을 합성하였다. 이들 새로운 디올과 succinic acid, adipic acid, 혹은 suberic acid와 titanium(IV) isopropoxide 촉매하에서 170, 190, 또는 220 ℃에서 축합중합시켜 분자구조가 규칙적으로 배열된 새로운 지방족 폴리에스테르와 무질서한 구조를 갖는 폴리에스테르를 각각 얻었다. 이들 지방족 폴리에스테르들의 유리전이온도(Tg)는 -40에서 30 ℃ 사이였다. 또한 170 ℃에서 제조된 분자구조가 규칙적으로 배열된 폴리에스테르가 높은 온도에서 합성된 구조가 무질서한 폴리에스테르들보다 Tg가 5-10 ℃ 정도 높았다. 체외분해 실험 결과, 분자구조가 규칙적으로 배열된 폴리에스테르가 불규칙한 중합체보다 완충용액 속에서 가수분해속도가 느렸다.
Four kinds of new aliphatic diols were synthesized by the ring opening reaction of glycolide with 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanediol, or 1,4-cyclohexanedimethanol, a difunctional initiator, in the presence of stannous octoate catalyst. The resulting diols were melt-polymerized with succinic acid, adipic acid, or suberic acid at 170, 190, or 220 ℃ to produce new sequentially ordered aliphatic polyesters and their corresponding polyesters with random structure. Their glass transition temperatures (Tg) ranged from -40 to 30 ℃. The sequentially ordered polyesters prepared at 170 ℃ had higher Tg of 5 to 10 ℃ than the polyesters with random structure produced at higher temperature. From in-vitro degradation test, the sequentially ordered polyesters was slower in the rate of hydrolysis in a buffer solution than the polymers with random molecular structure.
Keywords:sequentially ordered aliphatic diol;biodegradable polyesters;transesterification;in-vitro degradation;degradation rate
- Vert M, Mauduit J, Biomaterials, 15, 1209 (1994)
- Singhal JP, Singh H, Ray AR, Rev. Macromol. Chem. Phys., C28, 475 (1988)
- Satyanarayana D, Chatterji PR, Rev. Macromol. Chem. Phys., C33, 349 (1993)
- Bhardwaj R, Blanchard J, J. Pharm., 170, 109 (1998)
- Winet H, Bao JY, J. Biomed. Mater. Res., 40, 567 (1998)
- Wise DL, Fellmann TS, Sanderson JE, Wentworth RL, Drug Carriers in Biology and Medicine, Academic Press, New York, p 237 (1979)
- Lee SH, Kim SH, Han YK, Kim YH, J. Polym. Sci. A: Polym. Chem., 40(15), 2545 (2002)
- Bendix D, Polym. Degrad. Stabil., 59, 129 (1998)
- Kricheldorf HR, Mang T, Jonte JM, Macromolecules, 17, 2173 (1984)
- Mainil-Varlet P, Curtius R, Gogolewski S, J. Biomed. Mater. Res., 36, 360 (1997)
- Kim SH, Han YK, Kim HY, Ahn KD, Chang T, Makromol. Chem., 194, 3229 (1993)
- Zhu KJ, Bihai S, Shilin Y, J. Polym. Sci. A: Polym. Chem., 27, 2151 (1989)
- Okada M, Okada Y, Tao A, Aoi K, J. Appl. Polym. Sci., 62(13), 2257 (1996)
- Okada M, Tachikawa K, Aoi K, J. Polym. Sci. A: Polym. Chem., 35(13), 2729 (1997)
- Lee SH, Han YK, Kim ER, Im SS, Polym.(Korea), 21(6), 926 (1997)
- Tomita K, Ida H, Polymer, 14, 55 (1973)
- Na SK, Kong BG, Choi C, Kim JG, Hong WH, Nah JW, Polym.(Korea), 29(1), 41 (2005)
- Hoffman KR, Casey DJ, J. Polym. Sci. A: Polym. Chem., 23, 1939 (1985)
- Shih C, J. Control. Release, 834, 9 (1995)