Langmuir, Vol.20, No.26, 11557-11568, 2004
Using wavelets to analyze AFM images of thin films: Surface micelles and supported lipid bilayers
This paper presents micro- and nanoanalysis of thin films based on images obtained by atomic force microscopy (AFM). The analysis exploits the discrete wavelet transform and the resulting wavelet spectrum to study surface features. It is demonstrated that the wavelet technique can characterize micro- and nanosurface features and distinguish between similar surface structures. The use of a feature extraction method is shown. The method involves the separation of certain frequency content from the original AFM images and analyzing the data independently to gain quantitative information about the images. By using the feature extraction method, soft surfaces in water are analyzed and nanofeatures are measured. The packing of surface micelles of sodium dodecyl sulfate on a self-assembled monolayer is analyzed. The characteristics of pore formation, due to penetration of the antibacterial peptide protegrin, into a solid-supported lipid bilayer are quantified. The sizes of the pores are obtained, and it is observed that the line tension of the pores reduces the fluctuations of the lipid bilayer.