화학공학소재연구정보센터
Langmuir, Vol.20, No.20, 8659-8667, 2004
Dewetting behavior of a block copolymer/homopolymer thin film on an immiscible homopolymer substrate
Numerous previous studies have established that the addition of a microphase-ordered AB diblock copolymer to a thin homopolymer A (hA) film can slow, if not altogether prevent, film rupture and subsequent film dewetting on a hard substrate such as silica. However, only a few reports have examined comparable phenomena when the hA/AB blend resides on a soft B-selective surface, such as homopolymer B (hB). In this work, the dewetting kinetics of thin films composed of polystyrene (PS) and a symmetric poly(styrene-b-methyl methacrylate) (SM) diblock copolymer on a poly(methyl methacrylate) substrate is investigated by hot-stage light microscopy. Without the SM copolymer, the dewetting rate of the PS layer is constant under isothermal conditions and exhibits Arrhenius behavior with an apparent activation energy of similar to180 kJ/mol. Addition of the copolymer promotes a crossover from early- to late-stage dewetting kinetics, as evidenced by measurably different dewetting rates. Transmission electron microscopy reveals the morphological characteristics of dewetted PS/SM films as functions of film thickness and SM concentration.