화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.16, No.2, 296-303, April, 2005
PVC와 ABS 혼합물의 공열분해에 대한 금속산화물의 첨가 효과
Effects of Metal Oxide Addition on Co-pyrolysis of PVC and ABS Mixtures
E-mail:
초록
PVC와 ABC의 혼합물을 대상으로 혼합비에 따른 공열분해 특성과 CaO와 Cu2O의 첨가효과를 TG와 GC-MS를 이용하여 연구하였다. 500 ℃의 등온실험에서 ABS의 혼합비율이 증가할수록 스틸네 단량체와 방향족 화합물의 수율은 증가하였으며, BTX 화합물의 최대 수율은 PVC와 ABS의 혼합비가 4:1일 때 16.14% 정도임을 확인하였다. 금속산화물을 첨가한 경우 액상 생성물의 수율은 혼합비 0.4의 CaO를 첨가했을 때 73%와 0.4의 Cu2O를 첨가했을 때 70%인 최대값을 얻을 수 있었으며, 각각 혼합비 0.5인 CaO와 1.0인 Cu2O를 첨가했을 때 기상 생성물에 포함된 염화수소를 완전히 제거할 수 있었다. 본 연구의 실험조건에서는 염화수소를 완전히 제거할 수 있고, 가장 높은 액상 수율을 얻을 수 있는 반응조건은 500 ℃에서 혼합비 0.5인 CaO나 혼합비 1.0인 Cu2O를 첨가하는 것으로 사료된다.
The co-pyrolysis characteristics of polyvinylchloride (PVC) and acrylonitrile butadiene styrene (ABS) mixtures with various mixing ratios and effect of addition of CaO and Cu2O have been studied using thermogravimetry (TG) and gas chromatograph-mass spectrometry (GC-MS). In an isothermal decomposition conducted at 500 ℃, the yields of styrene monomers and aromatic compounds increased as the mixing ratio of ABS increased, and the yield of BTX compounds reached its maximum (16.14%) when the mixing ratios of PVC and ABS was 4:1. In an isothermal decomposition added with metal oxides, the maximum yield of liquid product was 73% when CaO [CaO/(PVC+ABS)=0.4] was added and it was 70% when Cu2O [Cu2O/(PVC+ABS)=0.4] was added, respectively, where HCI contained in the gaseous product was completely removed when added with CaO [CaO/(PVC+ABS)=0.5] and Cu2O [Cu2O/(PVC+ABS)=1.0]. Therefore, to obtain the highest yield of liquid product it appears to be the reaction condition: the reaction temperature of 500 ℃ and mixing ratios of CaO and Cu2O are 0.5 and 1.0, respectively.
  1. Ghim YS, HWAHAK KONGHAK, 30(2), 133 (1992)
  2. 김영성, 선도원, 이영우, 손재익, 화학공업과기술, 11, 238 (1993)
  3. 도갑수, 화학공업과기술, 7, 5 (1989)
  4. Kim HT, Song BS, Park CH, Park YH, Korea resource & Reutilization corporation Reports, 27, Korea (1996)
  5. Lee CG, Kang SH, Kim JS, Yun JS, Kang Y, Choi MJ, J. Korean Ind. Eng. Chem., 15(2), 188 (2004)
  6. Woo SI, Master Dissertation, KAIST, Seoul, Korea (1975)
  7. Uddin MA, Sakata Y, Ind. Eng. Chem. Res., 38, 1406 (1999) 
  8. Lim JC, Min KE, Polym.(Korea), 20(4), 558 (1996)
  9. Kim WH, Kim JI, Chung KY, Park PW, Ha CS, Polym.(Korea), 21(3), 456 (1997)
  10. Stomberg RR, Straus S, Achhammer BG, J. Polym. Sci., 35, 355 (1959) 
  11. Troitskii BB, Troitskaya LS, Myakov VN, Lepaev AF, J. Polym. Sci. Symposium, 42, 1347 (1973)
  12. Palma G, Carenza M, J. Appl. Polym. Sci., 14, 1737 (1970) 
  13. 최정욱, LG화학 고분자기술, 36, 39 (1996)
  14. Turi EA, ed. E. A. Turi, 2, 31, Academic Press, Boston (1997)
  15. Mark HF, Bikales N, Overberger CG, Menges G, Kroschwitz JI, Kroschwitz JI, 1, 9, John Wiley & Sons Inc, New York (1985)
  16. Lingaiah N, Uddin MA, Muto A, Imai T, Sakata Y, Fuel, 80, 1901 (2001) 
  17. Kim KH, Oh JW, Yoo KO, J. Korea Solid Wastes Eng. Soc., 14, 87 (1997)