화학공학소재연구정보센터
Polymer(Korea), Vol.29, No.2, 107-121, March, 2005
고분자 전기인광소자에서의 에너지 전이, 소자 특성 및 인광염료의 리간드 변화에 따른 광학적, 전기적 특성 변화
Energy Transfer and Device Performance in Polymer Based Electrophosphorescent Light Emitting Diodes and Effect of Ligand Modification in the Optical and Electrical Properties of Phosphorescent Dyes
E-mail:
초록
전기인광소자(electrophosphorescent light emitting diodes)의 경우 인광염료내에 있는 중금속에 의해 효과적인 전자 스핀-궤도 결합(spin-orbit coupling)이 가능하며, 이로 인해 일중항 여기자뿐만 아니라 삼중항 여기자로부터 발광이 가능하므로 이론적으로 100% 내부발광효율을 얻을 수 있다. 본 논문에서는 지난 몇 년 동안 본 연구실에서 진행한 고분자 호스트를 사용한 고분자 전기인광소자의 특성 및 에너지 전이 메커니즘에 대하여 기술하였다. 또한 고분자 전기인광소자에서의 상분리 및 응집현상이 고분자 호스트와 게스트인 인광염료간의 에너지 전이와 소자 특성에 미치는 영향을 규명하였다. 마지막으로 인광염료의 리간드에 치환체 도입 및 리간드 변화에 따른 전이금속화합물의 광학적, 전기적 특성 변화에 대하여 연구하였다.
Electrophosphorescent light emitting diodes (LEDs) using phosphorescent dyes as triplet emitter, which incorporate a heavy metal atom to mix singlet and triplet states by the strong spin-orbit coupling, can achieve the theoretically 100% internal quantum efficiency. In this paper, we report on the performance and the energy transfer mechanism of polymer based highly efficient electrophosphorescent LEDs. The effect of phase separation and aggregation to the energy transfer between polymer hosts and phosphorescent guests and performance of polymer electrophosphorescent LEDs were investigated. Finally, the effect of introducing substitute group and ligand modification of phosphorescent dyes on optical and electrical properties are reported.
  1. Blado MA, O'Brien DF, Thompson ME, Forrest SR, Phys. Rev. B, 60, 14422 (1999) 
  2. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA, Bredas JL, Logdlund M, Salaneck WR, Nature, 397(6715), 121 (1999) 
  3. Cao Y, Parker ID, Yu G, Zhang C, Heeger AJ, Nature, 397(6718), 414 (1999) 
  4. Kim JS, Ho PKH, Greenham NC, Friend RH, J. Appl. Phys., 88, 1073 (2000) 
  5. Wohlgenannt M, Tandon K, Mazumdar S, Ramasesha S, Vardeny ZV, Nature, 409(6819), 494 (2001) 
  6. Wilson JS, Dhoot AS, Seeley AJAB, Khan MS, Kohler A, Friend RH, Nature, 413, 828 (2001) 
  7. Segal M, Baldo MA, Holmes RJ, Forrest SR, Soos ZG, Phys. Rev. B, 68, 075211 (2003) 
  8. Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR, Nature, 395(6698), 151 (1998) 
  9. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR, Appl. Phys. Lett., 75, 4 (1999) 
  10. Adachi C, Baldo MA, Thompson ME, Forrest SR, J. Appl. Phys., 90, 5048 (2001) 
  11. Lee CL, Lee KB, Kim JJ, Appl. Phys. Lett., 77, 2280 (2000) 
  12. Lee CL, Lee KB, Kim JJ, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 85, 228 (2001)
  13. Yang MJ, Tsutsui T, Jpn. J. Appl. Phys., L828, 39 (2000)
  14. Kawamura Y, Yanagida S, Forrest SR, J. Appl. Phys., 92, 87 (2002) 
  15. Chen FC, Yang Y, Thompson ME, Kido J, Appl. Phys. Lett., 80, 2308 (2002) 
  16. Noh YY, Lee CL, Kim JJ, Yase K, J. Chem. Phys., 118(6), 2853 (2003) 
  17. Adachi C, Kwong RC, Djurovich P, Adamovich V, Baldo MA, Thompson ME, Forrest SR, Appl. Phys. Lett., 79, 2082 (2001) 
  18. Lee CJ, Kang NG, Cho YS, Lee JS, Kim JJ, Opt. Mater., 21, 119 (2002)
  19. Jung SO, Kang YJ, Kim HS, Kim YH, Lee CL, Kim JJ, Lee SK, Kwon SK, Eur. J. Inorg. Chem., 17, 3415 (2004) 
  20. Das RR, Lee CL, Noh YY, Kim JJ, Opt. Mater., 21, 143 (2002) 
  21. Lee CJ. Das RR, Noh YY, Kim JJ, J. Information Display, 3, 6 (2002)
  22. Nishizawa M, Suzuki TM, Sprouse S, Watts RJ, Ford PC, Inorg. Chem., 23, 1837 (1984) 
  23. Jaffe HH, Orchin M, Theory and Applications of Ultraviolet Spectroscopy, Wiley, New York (1962)
  24. Watts RJ, Crosby GA, Sansregret JL, Inorg. Chem., 11, 1474 (1972) 
  25. Adachi C, Kwong RC, Forrest SR, Org. Electron., 2, 37 (2001) 
  26. Lee CJ, Das RR, Kim JJ, Chem. Mater., 16, 4642 (2004) 
  27. Lee CL, Das RR, Kim JJ, Curr. Appl. Phys., 5, 309 (2005) 
  28. Kunkely H, Vogler A, Chem. Phys. Lett., 319, 486 (2000) 
  29. Lee HW, Das RR, Lee CL, Noh YY, Kim JJ, Mat. Res. Soc. Symp. Proc., 708 (2002)
  30. Tolman CA, Chem. Rev., 77, 313 (1977) 
  31. Woska D, Prock A, Giering WP, Organometallics, 19, 4629 (2002) 
  32. Monkman AP, Burrows HD, Hartwell LJ, Horsburgh LE, Hamblett I, Navaratnam S, Phys. Rev. Lett., 86, 1358 (2001) 
  33. O'Brien DF, Baldo MA, Thompson ME, Forrest SR, Appl. Phys. Lett., 74, 442 (1999) 
  34. Holmes RJ, Forrest SR, Tung YJ, Kwong RC, Brown JJ, Garon S, Thompson ME, Appl. Phys. Lett., 82, 2422 (2003) 
  35. Tokito S, Iijima T, Tsuzuki T, Sato F, Appl. Phys. Lett., 83, 2459 (2002) 
  36. Chen X, Liao JL, Liang Y, Ahmed MO, Tseng HE, Chen SA, J. Am. Chem. Soc., 125, 637 (2003)
  37. Tokito S, Suzuki M, Kamachi M, Shirane K, Sato F, Org. Electron., 4, 105 (2003) 
  38. Igarashi T, Kondo K, Koyama T, Yamaguchi T, Appl. Phys. Lett., 86, 103507 (2005)