화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.264, No.1, 121-127, 2003
Electrophoresis of a charge-regulated spheroid along the axis of an uncharged cylindrical pore
Boundary effects can have a profound influence on the electrophoretic behavior of a charged entity, in particular, when the entity is nonspherical and its surface conditions are dependent upon the nearby environment. In this study, the electrophoresis of a spheroid along the axis of an uncharged cylindrical pore is analyzed for the case where the electrical potential is low and the applied electric field is weak. We consider the case where the surface of a particle contains dissociable acidic and basic functional groups, which simulate biological colloids and entities covered by an artificial membrane. This leads to a mixed-type boundary value problem, which extends the conventional constant-surface-potential and constant-surface-charge-density models to a more general case. The effects of the particle aspect ratio, the relative magnitudes of particle and pore, the thickness of the double layer surrounding a particle, and the pH of the liquid phase on the electrophoretic mobility of a particle are investigated. Several interesting results are observed; for example, if the volume of a particle is fixed, its mobility may have a local maximum as the relative magnitudes of its two axes vary. (C) 2003 Elsevier Inc. All rights reserved.