화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.6, 759-763, October, 2003
4-Octyl-4'-(5-carboxypentamethyleneoxy)azobenzene(8A5H)과 인지질 혼합 Langmuir-Blodgett(LB)막의 전기화학적 특성
Electrochemical Properties of Langmuir-Blodgett(LB) Films mixed with 4-Octyl-4'-(5-carboxypentamethyleneoxy)azobenzene (8A5H) and Phospholiphid
E-mail:
초록
8A5H와 인지질 혼합 LB막에 대한 전기화학적 특성을 조사하였다. 8A5H 단분자막과 8A5H-DLPC(몰비, 1:1)혼합 LB막은 친수처리하나 indium tin oxide(ITO) 기판상에 Langmuir-Blodgett법으로 제막하였으며, 이들 LB막의 전기화학적 특성은 three-electrode system(Ag/AgCl reference electrode, platinum wire counter electrode와 LB film-coated ITO working electrode)의 cyclic voltammetry법을 사용하여 여러 농도(0.1, 0.5 및 1.0 mol/L)의 NaClO4 용액에서 측정하였다. 그리고 LB막에 대한 측정범위는 초기전압에서 -1350 mV까지 환원시킨 후 1650 mV까지 산화를 진행하였다가 다시 초기전압까지 실험하였다. 주사속도는 각각 50, 100, 150 및 200 mV/s이다. 그 결과 순환전류전압곡선으로부터 ITO상에 LB법으로 제막된 8A5H 단분자와 8A5H-DLPC 혼합 LB막은 비가역적인 산화반응만이 일어남을 알 수 있었다.
We investigated the electrochemical properties for Langmuir-Blodgett (LB) films mixed with 4-octyl-4'-(5-carboxylpentamethyleneoxy)azobenzene (denoted as 8A5H) and phospholipid (dilauroyl-L-α-phosphayidylcholine, denoted as DLPC). LB films of 8A5H monolayer and 8A5H-DLPC (molar ratio, 1:1) were deposited by using the Langmuir-Blodgett method on the indium tin oxide (ITO) glass. The electrochemical properties were measured by using a cyclic voltammetry with a three-electrode system, an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode at a various concentration (0.1, 0.5, and 1.0 mol/L) of NaClO4 solution. The measuring range covered the reduction, from the initial potential to -1350 mV, then the oxidation, to 1650 mV, and finally to the initial point. The scan rates were 50, 100, 150 and 200 mV/s, respectively. As a result from of the cyclic voltammogram, LB films of 8A5H monolayer and 8A5H-DLPC were found to be caused by an irreversible oxidation process.
  1. Yokoyama S, Kakimoto M, Imai Y, Mol. Cryst. Liq. Cryst., 227, 295 (1993)
  2. Cho IK, Kang TB, Lee HK, J. Korean Ind. Eng. Chem., 13(1), 75 (2002)
  3. Park KH, Song JY, J. Ind. Eng. Chem., 8(2), 126 (2002) 
  4. Roberts G, Langmuir-Blodgett Films, p. 321, 394, Plenum, New York (1990)
  5. Kudo K, Itadera K, Kuniyoshi S, Tanaka K, Thin Solid Films, 248(1), 92 (1994) 
  6. Ulman A, An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly, p. 394, Academic Press, San Diego (1991)
  7. Park KH, Park TG, J. Korean Ind. Eng. Chem., 11(1), 87 (2000)
  8. Kim JW, Choi HJ, Lee HG, Choi SB, J. Ind. Eng. Chem., 7(4), 218 (2001)
  9. Isoda S, Ueyama S, Nishikawa S, Miyamoto M, Akiyama K, Hanazato Y, Wada O, Maeda M, Symp. Future Electron Devices, 12, 107 (1993)
  10. Isoda S, Nishikawa S, Ueyama S, hanazato Y, Kawakobo H, Maeda M, Thin Solid Films, 210, 290 (1992) 
  11. Deisenhofer J, Epp O, Miki K, Huber R, Michel H, Nature, 318, 618 (1985) 
  12. Iwamoto M, Mjina Y, Naruse H, J. Appl. Phys., 72, 1631 (1992) 
  13. Wang YQ, Yu HZ, Mu T, Luo Y, Zhao CX, Liu ZF, J. Electroanal. Chem., 438(1-2), 127 (1997) 
  14. Park KH, Iwamoto M, J. Colloid Interface Sci., 193(1), 71 (1997) 
  15. Byun YJ, A Study on the Physical Properties for Mixtures of Phospholipid and Fatty Acid Containing Azobenzene, Master of Engineering Thesis, Changwon National University (1999)
  16. Ko JM, Park HC, Polym. Sci. Technol., 10(4), 519 (1999)