화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.1, 75-81, February, 2002
TEOS-TMB-H2O계로부터 SiO2-B2O3 막제조에 관한 연구
Preparation of Microporous SiO2-B2O3 Membrane from TEOS-TMB-H2O System
E-mail:
초록
다공성 SiO2-B2O3 막을 졸겔법에 의해서 Si(OC2H5)4-(CH3O)3B-H2O-C2H5OH 계로부터 제조하고 막의 특성을 XRD, IR, BET, TG-DTA, SEM, TEM을 사용하여 조사하였다. 괴상의 다공성 SiO2-B2O3 막 제조를 위한 Si(OC2H5)4 : (CH3O)3B : H2O : C2H5OH의 최적 몰비는 1 : 0.11 : 5.385 : 5.385 이었다. Si(OH4)와 B(OH3)는 400 ℃ 이하에서 생성되고 SiO2-B2O3는 500 ℃ 이상에서 생성되었다. 25 ℃~800 ℃ 온도범위에서 얻어진 건조 겔체는 평균 기공직경이 0.0034 μm~0.0052 μm이고 표면적은 244.478 m(2)/g~648.138 m(2)/g이었으며, 입자의 크기는 7 nm~35 nm인 무정형의 다공체이었다.
A porous borosilicate membrane was prepared from Si(OC2H5)4- (CH3O)3B-H2O-C2H5OH system by sol-gel method. In order to investigate the chracteristics of this membrane, the analytical methods such as X-ray diffractometer, IR spectrophotometer, BET, TG-DTA, SEM and TEM have been utilized. For porous borosilicate membrane, the optimum mole ratio of Si(OC2H5)4 : (CH3O)3B : H2O : C2H5OH was 1 : 0.11 : 5.385 : 5.385. Most of borons in the gels dried at room temperature were considered to be of boric acid forms, since they were hydrogen bonded to the silica network. In the 100 ℃~500 ℃ range, however, some of the boric acids were condensed with silica frame work to form terminal =B-O-Si≡. Above 500 ℃, the condensation proceeded further and boron was fully incorporated into the frame work of =B-O-Si≡. Therefore, the porous borosilicate membrane was obtained by the heat treatment of the gel above 500 ℃. In the 25 ℃~800 ℃ range, the surface area of sintered gel was between 244.478 m(2)/g~648.138 m(2)/g; the median pore diameter was between 0.0034 μm ~ 0.0052 μm; and the particle size of sintered gel was between 7 nm~35 nm.
  1. Govid R, Atnoor D, Ind. Eng. Chem. Res., 30, 594 (1991) 
  2. Uemiya S, Sato N, Ando H, Kude Y, Matsuda T, Kikuchi E, J. Membr. Sci., 56, 303 (1991) 
  3. Adachi G, Nagai H, Shiokawa J, J. Less-Common Metals, 97, L9 (1984) 
  4. Hwang ST, Kammermeyer K, Can. J. Chem. Eng., 44(2), 82 (1966)
  5. Hsieh HP, AIChE Symp. Ser., 84(261), 1 (1988)
  6. Hsieh HP, Catal. Rev.-Sci. Eng., 33, 1 (1991)
  7. Shindo Y, Hakuta T, Yoshitome H, Inoue H, J. Chem. Eng. Jpn., 16(2), 120 (1983)
  8. Shindo Y, Hakuta T, Yoshitome H, Inoue H, J. Chem. Eng. Jpn., 17(6), 650 (1984)
  9. Inoue H, Shindo Y, Hakuta T, Yoshitome H, J. Chem. Eng. Jpn., 18(6), 485 (1985)
  10. Shelby JE, Molecular Solubility and Diffusion, in Treatise on Materials Science and Technology; ed. M. Tomozawa, and R.H. Doremus 17, Academic Press, New York (1979)
  11. Naito M, Nakahira K, Fukuda Y, Mori H, Tsubaki J, J. Membr. Sci., 129(2), 263 (1997) 
  12. Nam SW, Ha HY, Hong SA, J. Membr., 2(1), 21 (1992)
  13. Li D, Seok DR, Hwang ST, J. Membr. Sci., 37, 267 (1988) 
  14. Li D, Hwang ST, J. Membr. Sci., 66, 119 (1992) 
  15. Shelekhim AB, Grosgogeat EJ, Hwang ST, J. Membr. Sci., 66, 129 (1992) 
  16. Villegas MA, Aparicio M, Duran A, J. Non-Cryst. Solids, 218, 146 (1997) 
  17. Villegas MA, Fernandez JM, J. Mater. Sci., 23, 2464 (1988) 
  18. Tohge N, Matsuda A, Minami T, J. Am. Ceram. Soc., 70, C13 (1987)