화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.36, No.2, 144-150, April, 1998
용융탄산염 연료전지 Anode의 성능해석
Analysis of MCFC Anode Performance
초록
MCFC전극의 anode를 agglomerate 모델로 해석하여 전극의 과전압과 전류밀도와의 관계를 이론적으로 구하였다. 두 가지 서로 다른 반응물조성에서 전산모사하여 얻어진 계산값을 실험적으로 측정된 값과 비교한 결과가 잘 일치하였다. 반응물 조성이 전지의 성능에 미치는 영향을 조사한 결과, 수소:이산화탄소가 1:1.7일 때 일정한 과전압에서 전류의 밀도가 가장 커져 전지의 성능이 최대로 좋아지는 것으로 나타났다. 전극의 두께는 표준(L=0.0762 cm)으로 사용했던 것의 0.6배 이상이면 전지의 성능에 별 지장이 없음을 보여 주었다 또한 반응표면적이 커질수록 전류밀도가 증가하는 정도를 관찰하였다.
The anode of MCFC could be explained by dry agglomerate model. Computer simulation results for relation between overpotential and current density were in good agreement with the experimental results at two different reactant compositions. The effect of reactant compositions on the electrode performance was observed. As the ratio of H2/CO2 in the input gas approached 1.7, current density showed the maximum value with constant overpotential. When the electrode thickness was 0.6 times larger than standard electrode thickness(L=0.0762 cm), electrode thickness did not give influence to anode performance. It was investigated that current density increased as internal surface area increased.
  1. Nam SW, Suh SH, Lim TH, Oh IH, Hong SA, Lim HC, J. Korea Hydrogen Energy Soc., 3, 55 (1992)
  2. Yuh CY, Selman JR, J. Electrochem. Soc., 131(9), 2062 (1984) 
  3. Fontes E, Lagergren C, Simonsson D, Electrochim. Acta, 38(18), 2669 (1993) 
  4. Kunz HR, Murphy LA, J. Electrochem. Soc., 135(5), 1124 (1988) 
  5. Ang PGP, J. Electrochem. Soc., 127, 1287 (1980) 
  6. Oh IH, Yoon SP, Lim TH, Nam SW, Hong SA, HWAHAK KONGHAK, 33(5), 640 (1995)
  7. Rostrup-Nielsen: Catalysis Science and Tech., 5, Berlin, GDR, 1 (1984)
  8. Lee JS, "Electrochemistry," Bosung Publishing Co. (1994)
  9. Newman JS, "Electrochemical Systems," 2nd ed., Prentice Hall, Englewood Cliffs, NJ (1991)
  10. El-Anadouli BE, Ateya BG, "Modelling of Batteries and Fuel Cells," Electrochemical Soc., 1 (1991)
  11. Roh JS, Hong SA, Suh SS, HWAHAK KONGHAK, 34(5), 663 (1996)