화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.33, No.5, 640-651, October, 1995
용융탄산염 연료전지용 Anode의 제공공정에 관한 연구
Studies on the Fabrication Process of the Anode for Molten Carbonate Fuel Cells
초록
용융탄산염 연료전지용 Ni+10w/o Cr anode의 제조공정을 최적화하기 위하여 각 제조공정변수가 anode의 물리적 성질에 미치는 영향을 살펴보았다. 제조공정 변수 중 결합제 양을 증가시키는 방법으로는 기공크기와 기공률을 크게 변화시킬 수 없었으나, 볼밀시간, 소성온도, 소성분위기 등을 조절함으로써 원하는 물성의 anode를 제조할 수 있었다. 즉, 볼밀시간을 48시간으로, 그리고 소성온돌를 900℃ 이상으로 함으로써 3-4㎛의 평균기공크기와 50-60%의 기공률을 갖는 Ni-10w/o Cr
anode를 제조할 수 있었으며, 이 때 소성분위기로는 Cr이 Cr2O3로 산화되어 Ni 입자간의 소결을 억제할 수 있는 산화-환원분위기 또는 저순도 환원분위기(99.5% H2)가 적합하였다.
고순도 환원분위기(99.9999% H2)하에서 소성하는 경우에는 Cr의 Ni에 대한 고용량이 증가하는 대신 Cr산화물은 형성되지 않아 Ni 입자간의 소결을 억제할 수 없었으며 결과적으로 기공률이 42%로 감소하여 anode로는 부적합하였다.
The effect of process variables on the physical properties of the anode was investigated to optimize the fabrication process of the Ni+10 w/o Cr anode for molten carbonate fuel cells and it was found that the desired characteristics of the anode such as pore size and porosity could be obtained through the change of the ball mill time, the firing temperature, and the firing atmosphere, but not through the change of the binder amount. When the ball mill time was 48 hours and the firing temperature was over 900℃, the anode with the mean pore size of 3-4㎛ and the porosity of 50-60% could be fabricated. This was possible only when the green sheet of the anode was fired under either the oxidation-reduction Cr2O3. Under the reduction atmosphere of 99.9999% H2 the solid solution amount of Cr in Ni increased, but sintering of Ni particles could not be hindered due to no formation of Cr2O3, resulting in the porosity of 42% which was too low for anodes.
  1. Kinoshita K, McLarnon RF, Calins EJ, "Fuel Cells a Handbook," DOE/METC-88/6096, U.S. Department of Energy (1988)
  2. Appleby AJ, Foulkes FR, "Fuel Cell Handbook," Van Nostrand Reinhold, New York (1989)
  3. 박원훈, 홍성안, "용융탄산염 연료전지 기본기술 개발(I)," 동력자원부 보고서 (1990)
  4. Trachtenberg I, J. Electrochem. Soc., 111(1), 110 (1964)
  5. Baker BS, Maru HC, Proceedings of the Second Symposium on Molten Carbonate Fuel Cell Technology, Electrochem. Soc., Pennington, New Jersey (1990)
  6. Tacheuchi M, Program and Abstracts of 1988 Fuel Cell Seminar, Long Beach, California (1988)
  7. Paetsch L, Doyon J, Chamberlin R, Yuh C, Extended Abstracts of Electrochem. Soc., Meeting, 87-2, Pennington, New Jersey (1987)
  8. Erickson DS, Ong ET, Donado R, Program and Abstracts of 1986 Fuel Cell Seminar, Tuscon, Arizona (1986)
  9. Suski L, Wyrwa J, J. Appl. Electrochem., 20, 625 (1990) 
  10. Singh P, Benedict M, U.S. Patent, 4,659,379 (1987)
  11. Marianowski LG, Donado RA, Maru HC, U.S. Patent, 4,247,604 (1981)
  12. Iacovangelo CD, J. Electrochem. Soc., 133(11), 2410 (1986) 
  13. Onoda GY, Hench LL, "Ceramic Processing before Firing," John Wiley & Sons, New York (1978)
  14. Takeuchi M, Mitsushima S, Iwase Y, Okada H, Kahara T, Ohtsuka K, Program and Abstracts of 1992 Fuel Cell Seminar, Tucson, Arizona (1992)
  15. Reed JS, "Introduction to the Principles of Ceramic Processing," John Wiley & Sons, New York (1988)
  16. Pelton AD, Schmalzried H, Sticher J, J. Phys. Chem. Solids, 40(12), 1103 (1979) 
  17. Massalski TB, "Binary Alloy Phase Diagrams," American Society for Metals, Metals Park, Ohio (1986)