- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.26, No.4, 415-421, July, 2002
술폰화 PP-g-Styrene 중공사 이온교환막의 합성과 BSA 단백질 분리에 관한 연구
Synthesis of Sulfonated Hollow PP-g-Styrene Fibrous Ion-exchange Membrane and Separation of BSA Protein
E-mail:
초록
E-beam 전조사법을 이용하여 HPP-g-styrene 공중합체와 술폰화 반응을 통한 술폰화 HPP-g-styrene 섬유이온교환체를 합성하였다. 그라프트율은 스티렌 단량체 농도가 증가함에 따라 증가하였으며 스티렌 단량체 농도가 80%에서 그라프트율이 128%로 최대를 나타냈다. 술폰화율은 그라프트율이 증가함에 따라 증가하는 경향을 나타내었으며, 그라프트율이 100%일 때 13.4%로 최대값을 나타내었다. 술폰화 HPP-g-styrene 섬유이온교환체의 이온교환용량은 약 3.42 meq/g 으로써 흡착 성능이 매우 우수한 소재임을 확인하였다. BET 분석결과 술폰화 HPP-g-styrene의 비표면적은 62.54 m(2)/g, 기공크기는 25 Å으로 반응전보다 비표면적은 감소하였고 기공크기는 약간 증가하는 경향을 보였다. 또한 Bovine Serum Albumin (BSA) 흡착 실험 결과 술폰화도가 증가함에 따라 BSA 흡착 용량이 증가하는 경향을 나타내었으며, 술폰화도 13.4%에서 BSA 흡착용량 3.8 mg/g으로 최대를 나타내었다. 따라서 본 연구에서 합성한 섬유이온교환체가 BSA 흡착·분리에 적합한 소재임을 확인하였다.
A sulfonated PP-g-styrene ion-exchange hollow fiber membrane was prepared by pre-irradiation method with E-beam followed by sulfonation reaction. Degree of grafting increased with the increase of styrene monomer concentration and showed the maximum value of 128% at 80% of styrene monomer composition. Sulfonation yield increased with the degree of grafting. At 100% degree of grafting, sulfonation yield showed the maximum value of 13.4%. Ion exchange capacity of sulfonated HPP-g-styrene of 3.42 meq/g was attained, resulting in the remarkable increase of adsorption ability. BET analysis proved that the surface area of sulfonated HPP-g-styrene was 62.54 m(2)/g and the mean pore size was 25Å. From the BSA adsorption experiments, the adsorption amount of BSA was increased with sulfonation. At 13.4% sulfonation yield the adsorption amount of BSA was maximum as 3.8 mg/g. Sulfonated HPP-g-styrene was synthesized successfully and suitable for the adsorption and separation of BSA.
- Kim KS, Kang SH, J. Korean Ind. Eng. Chem., 9(2), 311 (1998)
- Bittencourt E, Stannett V, Villiams JL, Hopfenberg HB, J. Appl. Polym. Sci., 26, 879 (1981)
- Kobayashi S, Yamada A, Macromolecules, 8, 390 (1975)
- Sjabadka O, Acta Chim. Acad. Sci. Hung., 99, 363 (1979)
- Bittencourt E, Stannett V, Villiams JL, Hopfenberg HB, J. Appl. Polym. Sci., 26, 879 (1981)
- Hegazy EA, El-Asy NB, Dessouki AM, Shaker MM, Radiat. Phys. Chem., 33, 13 (1989)
- Okamoto J, Sugo T, Katakai A, Omichi H, J. Appl. Polym. Sci., 30, 2967 (1985)
- Nho YC, Park JS, Jin JH, J. Korean Ind. Eng. Chem., 7(5), 946 (1996)
- Kim M, Saito K, Radiat. Phys. Chem., 57, 167 (2000)
- Park JS, Nho YC, Polym.(Korea), 22(1), 47 (1998)
- Kabay N, Katakai A, Sugo T, Radiat. Phys. Chem., 46, 833 (1995)
- Hwang TS, Lee JH, Lee MJ, Polym.(Korea), 25(4), 451 (2001)
- Kang YU, Hwang TS, Song HY, Son WK, Park JK, Polym.(Korea), 23(1), 1 (1999)
- Kim M, Sasaki M, Saito K, Sugita K, Sugo T, Biotechnol. Prog., 14(4), 661 (1998)
- Anasthas HM, Caikar VG, React. Funct. Polym., 27, 23 (2001)
- Helfferich F, "Ion Exchange," McGraw-Hill Book Company, New York (1962)
- Holl W, Sontheimer H, Chem. Eng. Sci., 32, 755 (1977)
- Juang RS, Chou TC, Sep. Sci. Technol., 31(10), 1409 (1996)
- Ricker NL, Pittman EF, King CJ, J. Sep. Pro. Tech., 1, 23 (1980)
- Helfferich F, "Ion Exchange," p. 100, McGraw-Hill Book Company, New York (1962)