화학공학소재연구정보센터
Polymer(Korea), Vol.26, No.4, 415-421, July, 2002
술폰화 PP-g-Styrene 중공사 이온교환막의 합성과 BSA 단백질 분리에 관한 연구
Synthesis of Sulfonated Hollow PP-g-Styrene Fibrous Ion-exchange Membrane and Separation of BSA Protein
E-mail:
초록
E-beam 전조사법을 이용하여 HPP-g-styrene 공중합체와 술폰화 반응을 통한 술폰화 HPP-g-styrene 섬유이온교환체를 합성하였다. 그라프트율은 스티렌 단량체 농도가 증가함에 따라 증가하였으며 스티렌 단량체 농도가 80%에서 그라프트율이 128%로 최대를 나타냈다. 술폰화율은 그라프트율이 증가함에 따라 증가하는 경향을 나타내었으며, 그라프트율이 100%일 때 13.4%로 최대값을 나타내었다. 술폰화 HPP-g-styrene 섬유이온교환체의 이온교환용량은 약 3.42 meq/g 으로써 흡착 성능이 매우 우수한 소재임을 확인하였다. BET 분석결과 술폰화 HPP-g-styrene의 비표면적은 62.54 m(2)/g, 기공크기는 25 Å으로 반응전보다 비표면적은 감소하였고 기공크기는 약간 증가하는 경향을 보였다. 또한 Bovine Serum Albumin (BSA) 흡착 실험 결과 술폰화도가 증가함에 따라 BSA 흡착 용량이 증가하는 경향을 나타내었으며, 술폰화도 13.4%에서 BSA 흡착용량 3.8 mg/g으로 최대를 나타내었다. 따라서 본 연구에서 합성한 섬유이온교환체가 BSA 흡착·분리에 적합한 소재임을 확인하였다.
A sulfonated PP-g-styrene ion-exchange hollow fiber membrane was prepared by pre-irradiation method with E-beam followed by sulfonation reaction. Degree of grafting increased with the increase of styrene monomer concentration and showed the maximum value of 128% at 80% of styrene monomer composition. Sulfonation yield increased with the degree of grafting. At 100% degree of grafting, sulfonation yield showed the maximum value of 13.4%. Ion exchange capacity of sulfonated HPP-g-styrene of 3.42 meq/g was attained, resulting in the remarkable increase of adsorption ability. BET analysis proved that the surface area of sulfonated HPP-g-styrene was 62.54 m(2)/g and the mean pore size was 25Å. From the BSA adsorption experiments, the adsorption amount of BSA was increased with sulfonation. At 13.4% sulfonation yield the adsorption amount of BSA was maximum as 3.8 mg/g. Sulfonated HPP-g-styrene was synthesized successfully and suitable for the adsorption and separation of BSA.
  1. Kim KS, Kang SH, J. Korean Ind. Eng. Chem., 9(2), 311 (1998)
  2. Bittencourt E, Stannett V, Villiams JL, Hopfenberg HB, J. Appl. Polym. Sci., 26, 879 (1981) 
  3. Kobayashi S, Yamada A, Macromolecules, 8, 390 (1975) 
  4. Sjabadka O, Acta Chim. Acad. Sci. Hung., 99, 363 (1979)
  5. Bittencourt E, Stannett V, Villiams JL, Hopfenberg HB, J. Appl. Polym. Sci., 26, 879 (1981) 
  6. Hegazy EA, El-Asy NB, Dessouki AM, Shaker MM, Radiat. Phys. Chem., 33, 13 (1989)
  7. Okamoto J, Sugo T, Katakai A, Omichi H, J. Appl. Polym. Sci., 30, 2967 (1985) 
  8. Nho YC, Park JS, Jin JH, J. Korean Ind. Eng. Chem., 7(5), 946 (1996)
  9. Kim M, Saito K, Radiat. Phys. Chem., 57, 167 (2000) 
  10. Park JS, Nho YC, Polym.(Korea), 22(1), 47 (1998)
  11. Kabay N, Katakai A, Sugo T, Radiat. Phys. Chem., 46, 833 (1995) 
  12. Hwang TS, Lee JH, Lee MJ, Polym.(Korea), 25(4), 451 (2001)
  13. Kang YU, Hwang TS, Song HY, Son WK, Park JK, Polym.(Korea), 23(1), 1 (1999)
  14. Kim M, Sasaki M, Saito K, Sugita K, Sugo T, Biotechnol. Prog., 14(4), 661 (1998) 
  15. Anasthas HM, Caikar VG, React. Funct. Polym., 27, 23 (2001) 
  16. Helfferich F, "Ion Exchange," McGraw-Hill Book Company, New York (1962)
  17. Holl W, Sontheimer H, Chem. Eng. Sci., 32, 755 (1977) 
  18. Juang RS, Chou TC, Sep. Sci. Technol., 31(10), 1409 (1996)
  19. Ricker NL, Pittman EF, King CJ, J. Sep. Pro. Tech., 1, 23 (1980)
  20. Helfferich F, "Ion Exchange," p. 100, McGraw-Hill Book Company, New York (1962)