화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.1, 37-41, February, 2002
가압유동층 연소로에서 국내 무연탄의 연소특성
Combustion Characteristics of Domestic Anthracite Coal in a Pressurized Fluidized Bed Combustor
E-mail:
초록
유동층 연소로에서 국내 무연탄(발열량 : 4655 kcal/kg)의 연소특성을 고찰하였다. 실험 변수인 압력(200~600 kPa), 유동층 온도(850~950 ℃), 과잉공기의 양(10, 20, 30%)등이 연소로 내부에서 연소효율과 열전달계수에 미치는 영향을 규명하였다. 실험결과, 연소효율은 연소온도, 압력 그리고 과잉공기의 비가 증가할수록 증가하였으며 본 연구의 실험범위에서 연소효율은 80~90%으로 나타났다. 가압유동층 연소로내의 열전달계수는 223~571 W/m(2)K로 나타났다. 열전달계수는 연소온도와 압력이 증가할수록 증가하였으나, 과잉공기의 비가 증가할수록 감소하는 것으로 나타났다. 열전달계수는 무차원군인 Nu, Re, 그리고 Pr에 의한 상관식으로 나타낼 수 있었다.
Combustion characteristics of domestic anthracite coal (calorific heating value : 4655 kcal/kg) have been studied in a pressurized fluidized bed combustor. Effects of operating variables such as pressure (200~600 kPa), bed temperature (850~950 ℃) and excess air (10, 20, 30%) on the combustion efficiency and heat transfer coefficient of the combustor have been investigated. As a result of this study, it has been found that the combustion efficiency, which increased with increasing the bed temperature, pressure and excess air ratio, was in the range of 80~99% within the experimental conditions of this study. The heat transfer coefficient in a pressurized fluidized bed combustor has been found to be in the range of 223~571 W/m(2). The heat transfer coefficient increased as the bed temperature and pressure were increased, but it decreased with increased the excess air ratio. The heat transfer coefficient was expressed in terms of dimensionless groups of Nu, Re and Pr.
  1. Jin GT, Han KH, Shun DW, Yi CK, Bae DH, Cho SH, Park JH, Development of Bench Scale Pressurized Fluidized Bed Combustion, KIER-A03708, 28 (2000)
  2. Han KH, Kang SH, Bae SY, Chang HS, Ryu HJ, Shun DW, Ryu JI, Jin GT, Theor. Appl. Chem. Eng., 6, 3525 (2000)
  3. Kolar AK, Devaru BC, Heat Transfer from a Horizontal Finned Tube Immersed in a Gas-Solid Fluidized Bed of Large Particles, Proc. 11th International Con. on Fluidized Bed Combustion, 1331 (1991)
  4. Gunn DJ, Hilal N, Int. J. Heat Mass Transf., 39(16), 3357 (1996) 
  5. Gormar H, Renz U, Experimental and Theoretical Study on Heat Treansfer in Pressurized Fluidized Beds, Proc. 11th International Con. on Fluidized Bed Combustion, 19 (1991)
  6. Choi JC, Kim YJ, Moon SH, Kim SD, HWAHAK KONGHAK, 23(3), 153 (1985)
  7. Jin GT, Han KH, Shun DW, Yi CK, Bae DH, Cho SH, Park JH, Development of Bench Scale Pressurized Fluidized Bed Combustion, KIER-973402, 149 (1997)
  8. Botterill JSM, Teoman Y, Fluid-Bed Behaviour at Elevated Temperatures, FLUIDIZATION ed. J.R. Grace and J.M. Matsen, New York, 93 (1980)
  9. Grewal NS, Zobeck BJ, Mann MD, Hajicak DR, Evaluation of Heat Transfer Correlations for Fluidized Bed Boiler Tubes Proc. 9th International Con. on Fluidized Bed Combustion, 1153 (1987)
  10. Wu RW, Grace JR, Lim CJ, Brereton CMH, AIChE J., 35, 1685 (1989) 
  11. Olsson SE, Wiman J, Almstedt AE, Chem. Eng. Sci., 50(4), 581 (1995) 
  12. Kang Y, Kim YR, Ko MH, Seo YC, Jin GT, Son JE, Kim SD, HWAHAK KONGHAK, 35(2), 282 (1997)
  13. Cuenca MA, Anthony EJ, PFBC, 1st edition, Chapmena & Hall, 71 (1995)
  14. Wallman PH, Carlsson RCJ, Fluidized Bed Combustion Kinetics at Elevated Pressures, Proc. 11th International Con. on Fluidized Bed Combustion, 1571 (1991)
  15. Song BH, Kang Y, Seo YC, Jin GT, Son JE, Kim SD, HWAHAK KONGHAK, 34(5), 619 (1996)
  16. Molerus O, Schweinzer J, Heat Transfer to Submerged Tubes in Pressurized Gas/Solid Fluidized Beds, Proc. 9th International Con. on Fluidized Bed Combustion, 624 (1987)
  17. Yates JG, Chem. Eng. Sci., 51(2), 167 (1996)